
User 's Guide

Microsoft®Mouse

(Serial Version)

for the IBM® Personal Computer

Installation and Operation Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against
the law to copy any part of the software on cassette tape, disk, or any
other medium for any purpose other than the purchaser's personal use.

©Microsoft Corporation, 1984

If you have questions about this documentation or enclosed software,
complete the Problem Report at the back of this manual and return it
to Microsoft.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation.

IBM is a registered trademark of International Business Machines Cor­
poration.

Document No. 8809-300-02p
Part No. 039-099-027

Microsoft Mouse
(Serial Version)
Addendum

Version 3.0 of the mouse driver software (the version included
in this package) and later versions will run correctly if you are
using an IBM Color Graphics Adapter, IBM Monochrome
Adapter, Hercules Graphics Card, IBM Enhanced Graphics
Adapter, or IBM All Points Addressable Graphics Adapter.

Demonstration Programs

In this section in Chapter 3 of the Mouse Installation and
Operation Manual, page 25, change the Note to the following:

Note

Piano does not run on an IBM 3270 Personal Computer
with an All Points Addressable Graphics Adapter.

The Game of Life runs only on an IBM Personal Computer
with a Color/Graphics Monitor Adapter or an Enhanced
Graphics Adapter.

/

1

Microsoft Mouse

Making Mouse System Calls

In this section in Chapter 4 of the Mouse Installation and
Operation Manual, page 49, change the first sentence in the
first paragraph to read:

This section describes how to make mouse system calls from
the BASIC interpreter, from assembly language programs, and
from programs in high-level languages such as FORTRAN,
Pascal, and BASIC.

Making Calls from High-Level Languages

In this section in Chapter 4 of the Mouse Installation and
Operation Manual, page 52, change the first sentence in the
first paragraph to read:

You can make calls from compiled FORTRAN, Pascal, and
BASIC language programs.

Preface

In this section of the Microsoft Notepad Manual, page iii
(unnumbered), add the following text as the last paragraph
under the "Important" heading:

Notepad does not run on an IBM 3270 Personal Computer with
an All Points Addressable Graphics Adapter.

2

Addendum

What You Need

In this section in Chapter 1 of the PC Paintbrush User's Guide,
page 4, add the following note after the last paragraph:

Note

PC Paintbrush does not run if you are using an IBM
Monochrome Adapter or an IBM 3270 Personal Computer
with an All Points Addressable Graphics Adapter.

Introduction

Add the following to the "Introduction" section on p. 9 of the
PC Paintbrush User's Guide:

Do not erase files from the original Microsoft Mouse Program
Disk. Before beginning the PC Paintbrush installation, make
certain you are using a copy of the Program Disk. Follow these
steps to erase the PBRUSH.EXE or PBRUSH1.EXE file:

1. 	 Insert the PC Paintbrush disk into disk drive A.

2. 	 If you are using an IBM Enhanced Graphics Adapter,
type the following at the A> prompt:

erase PBRUSH.EXE

3. 	 If you are not using an IBM Enhanced Graphics Adapter,
type the following at the A> prompt:

erase PBRUSH1.EXE

3

Microsoft Mouse

Display Adapters

Add the following to p. 70 in the uDisplay Adapters" section of
the PC Paintbrush User's Guide:

If you are using the IBM Enhanced Graphics Adapter, please
note the following: '

• 	 To use PC Paintbrush with the IBM Enhanced Graphics
Adapter, your disk (or directory) must include all the PC
Paintbrush files plus the EGA.DEV file.

• 	 The See Clip option on the Page Menu is not available if
you are using an IBM Enhanced Graphics Adapter with
PC Paintbrush.

Local Undo

Add the following to p. 19 of the PC Paintbrush User's Guide:

• 	 You can use the Backspace key to perform a Local Undo
when using any tool except the Hand and Text tools.
Place the cursor on the area to be undone and press the
Backspace key.

• 	 When using the Show Screen, Adjust Palette, or ZOOM­
in/zoom-in options, you can cancel an action by pressing
both mouse buttons at the same time.

README.DOC

Please be sure to read the README.DOC file on your System
Disk before installing and using the Microsoft Mouse. The
README.DOC file contains information that became availa­
ble after this manual was printed.

4

Preface

This manual explains how to use the Microsoft Mouse and
accompanying software. In particular, it contains information
about:

• 	 How to install the mouse

• 	 How to use the mouse in programs

• 	 How to make system calls to the mouse software from
your application programs

Important

This manual assumes that you have read Section 2,
"Setup," and Section 3, "Operation," in the IBM Personal
Computer Guide to Operations manual. It also assumes
that you are familiar with Chapter 3, "DOS Commands,"
in the IBM Personal Computer Disk Operating System
manual.

iii

Contents

1 Introduction 1

Hardware Features 3

Software Features 4

Differences Between Mouse Versions 5

How to Use This Manual 6

2 Installation 7

Preliminary Procedures 9

Mouse Installation Procedure 11

Software Installation Procedure 12

3 How to Use the Mouse 19

Basic Techniques 21

Demonstration Programs 25

4 Mouse Interface and System Calls 37

Mouse Interface 39

Making Mouse System Calls 49

Function Descriptions 54

Appendix A Cleaning Instructions 77

Appendix B Piano Program Listing 81

Appendix C Sample Cursors 91

Index 111

v

Chapter 1

Introduction

Hardware Features 3

Software Features 4

Differences Between Mouse Versions 5

How to Use This Manual 6

1

Introduction

The Microsoft® Mouse is a hand-held pointing device that
controls the motion of the cursor on the CRT screen of the
IBM®Personal Computer. Designed to be used with a variety
of screen-oriented programs, the Microsoft Mouse frees you
from dependence on directional and text keys to move the
cursor and to make command selections.

By sliding the Microsoft Mouse across a flat surface, you can
guide the cursor to the words and symbols on the screen that
represent the commands of a program. By pressing the buttons
on the mouse, you can select the commands that you want to be
performed. You use the mouse instead of the keyboard to direct
the action of the program.

The Microsoft Mouse includes all the software and hardware
necessary to use the mouse with your computer. The Microsoft
Mouse is simple to use and easy to learn. This manual shows how
to install the mouse and how to use it.

Hardware Features

The Microsoft Mouse hardware consists of a mouse pointing
unit, attached cable, and a 25-pin "female" connector. The mouse
has two buttons for flexible command selection and a removable
ball for easy cleaning.

The mouse can be used with any serial communications inter­
face board capable of RS-232 standard asynchronous data
communications. The only other requirement is either a 25-pin
male connector or an adapter connector for the mouse cable.
All power for the mouse is supplied by your computer; no
additional power is required.

3

Microsoft Mouse

Software Features

The Microsoft Mouse software consists of the driver program for
implementing the mouse and demonstration programs that will
help you learn how to use the mouse.

No special configuration is required to operate the mouse. Sim­
ply load the mouse software into memory and you are ready to
use the mouse in any program that uses the Microsoft Mouse.

The mouse driver programs make the necessary modifications to
the operating system to run the mouse. Two driver programs are
provided for the different versions of DOS. The instructions on
using the driver programs are given in the "Software Installation"
section of Chapter 2.

The three demonstration programs, Doodle, Piano, and Life, are
designed to teach you the basic techniques of the Microsoft
Mouse. If you read the short tutorial in Chapter 3 and experi­
ment with the programs, you will soon be an expert at using the
mouse.

The applications software is a set of programs called Microsoft ~/
Mouse Menu. These are programs that provide mouse support
and permit you to use "popup menus" and the Microsoft Mouse
for application programs that currently have no built-in mouse
support. Included are prewritten mouse menus for some of the
most popular applications and a program to create your own
mouse menus. For more information, see the Mouse Menu manual.

Also included in the Microsoft Mouse package are mouse func­
tions to incorporate the Microsoft Mouse into your BASIC,
assembly, and high-level language application programs. Mouse
functions allow a program to access the mouse and control the
cursor. You can call these functions from your application pro­
grams by using the system calls described in Chapter 4.

4

Introduction

Differences Between Mouse Versions

There are two operational versions of the Microsoft Mouse: Bus
version and Serial version. The versions differ in system
requirements and the hardware included in the mouse pack­
age. The software is the same for either version.

The Serial version mouse is for the IBM PC equipped with a
serial communications interface board capable of RS-232
standard asynchronous communication. The board must have
a 25-pin male connector or a 25-pin male-to-female adapter.
Serial version packages include the mouse pointing unit, a
connecting cable, and a 25-pin female connector.

The Bus version mouse includes the mouse pointing unit, con­
necting cable, a 9-pin female connector, and an interface cir­
cuit board. The Bus version is for the IBM PC that either
doesn't have a serial communications interface board installed
or whose serial communications port is already used for some­
thing else.

5

Microsoft Mouse

How to Use This Manual

This manual provides ready information for both first-time
mouse users and experienced programmers.

• 	 Chapter 1 introduces the Microsoft Mouse hardware and
software.

• 	 Chapter 2 lists detailed instructions for installing the
Microsoft Mouse on your computer.

• 	 Chapter 3 gives the operating instructions for the Micro­
soft Mouse and teaches the basic techniques of the mouse
with a simple tutorial.

• 	 Chapter 4 discusses the interface between the Microsoft
Mouse and your computer, and describes the mouse func­
tions that can be called by your application programs
with the mouse system calls.

• 	 Appendix A explains how to clean the Microsoft Mouse.

• 	 Appendix B is the BASIC program listing of the demon­
stration program Piano.

• 	 Appendix C lists eight sample cursors that you may
incorporate into your own application programs.

6

Chapter 2

Installation

Preliminary Procedures 9

System Requirements 9

Unpacking 10

Removing the Foam Ring 11

Mouse Installation Procedure 11

Software Installation Procedures 12

Manual Installation Procedure 13

Unsuccessful Installation 14

Automatic Installation Procedures 15

DOS Versions l.x Installation Procedure 16

DOS Versions 2.x Installation Procedure 17

Backup Copies 18

7

Installation

This chapter gives instructions for installing the Microsoft Mouse
and mouse software. Before installing the mouse, read the follow­
ing preliminary procedures.

Preliminary Procedures

First, make sure that your system meets all the criteria set forth
in the following "System Requirements" section. The IBM Per­
sonal Computer should be set up and operational as specified in
the IBM Guide to Operations manual.

System Requirements

To use your Microsoft Mouse successfully, you will need the
following:

1. 	 An IBM Personal Computer

2. 	 An IBM Personal Computer Disk Operating System (DOS),
any version

3. 	 A disk drive

4. 	 A screen monitor

5. 	 An interface board capable of RS-232 standard serial com­
munications with either a 25-pin female connector or an
adapter cable for connecting to the mouse 25-pin male
connector

6. 	 The Microsoft Mouse

7. 	 The Microsoft Mouse software disk

8. 	 A high-resolution screen graphics interface board. (The
IBM Color/Graphics Adapter board is recommended.)

9

Microsoft Mouse

Unpacking

Upon receipt of your Microsoft Mouse package, check carefully

for shipping damage. If any item is damaged or missing, report it

to your computer dealer for further action.

Your Microsoft Mouse package should include the following:

The Microsoft Mouse

The Microsoft Mouse software disk with the following files:

123.DEF MENU.COM MPMS.MNU
123.MNU MOUSE.COM PIANO.BAS
AUTOEXEC.BAT MOUSE.LIB PIANO.EXE
DOODLE.EXE MOUSE.SYS VC.DEF
HOKUSAI MPIBM.DEF VC.MNU
LIFE.EXE MPIBM.MNU WS.DEF
MAKEMENU.EXE MPMS.DEF . WS.MNU

Note

Because the Microsoft Mouse is packaged with other
Microsoft products, there may be additional files listed
on the disk, or the above files may be contained on
another disk.

The Microsoft Mouse Installation and Operation Manual

A Microsoft Customer Service Plan

If reshipment of the mouse or the software disk is necessary,
contact Microsoft Corporation as instructed in the Customer
Service Plan before returning it.

10

Installation

Removing the Foam Ring

To protect the mouse during shipping, a soft foam ring is
placed between the ball-retaining cover on the bottom of the
mouse and the ball inside. Before installing the mouse, you
will need to remove the ring. Follow these steps:

1. 	 Hold the mouse upside down and locate the foam ring. (It
should be clearly visible in the center of the mouse.)

2. 	 Grasp the ring with your fingers.

3. 	 Carefully pull the ring out from under the retaining cover
and free the ring from the mouse.

If you have trouble, follow the procedure in Appendix A,
"Cleaning Instructions," to remove the ball-retaining cover.
Then remove the ring and replace the ball-retaining cover as
instructed.

Mouse Installation Procedure

Use the following procedure to connect the Microsoft Mouse to
a serial communications port.

Note

Once you connect the mouse to the selected serial port and
run the mouse software, the port can only be used for
mouse input. That is, the mouse software modifies DOS
so that the port is no longer available for application
programs or languages such as BASIC. To change ports,
you must move the mouse cable and change the software
as described in the "Software Installation Procedures"
section of this chapter.

11

Microsoft Mouse

1. 	 Set the power switch to OFF unless the system unit is
already off.

2. 	 Locate a serial communications port on the back of the
system unit. See the IBM Guide to Operations manual to
determine how the ports are numbered.

3. 	 Connect the mouse cable to the serial port connector.

Note

Some computer or serial interface boards may have a differ­
ent type of connector. If this is the case, ask your computer
dealer or the computer manufacturer how to obtain an
adapter cable.

The mouse should now be installed. The next step is installing
the software. The following section will tell you how.

Software Installation Procedures

This section gives instructions for loading the Microsoft Mouse
software into the IBM PC memory. The software can be loaded
manually after each system reset or automatically from a system
disk. The following subsections describe the ways to load the
mouse software.

U sing a system disk for automatic installation is the most conve­
nient way to load the mouse software. It requires a few prelimi­
nary steps to copy the appropriate mouse files onto each system
disk you plan to use. When you complete these steps, you will
not have to load the mouse software after each system reset.

12

Installation

Manual Installation

Use the following procedure if you wish to install the mouse
software manually each time you load the Disk Operating
System (DOS). The DOS is loaded after you turn on the compu­
ter and after a system reset (pressing the DEL key while hold­
ing down the CTRL and ALT keys).

1. 	 Insert your system disk into drive A and turn on the power
to the computer, or if power is already on, perform a system
reset. When the computer has finished its self-test, it will
ask you to change the time and date. After providing the
needed information or just pressing the RETURN key, you
will see the DOS banner and the A> prompt.

2. 	 If you have a multiple drive system, insert the mouse disk
into drive B. Type,

B:

and press the RETURN key.

If you have a single drive system, remove the system disk
from drive A and insert the mouse disk.

3. If the mouse is connected to the first serial port, type,

MOUSE /1

and press the RETURN key. If the mouse is connected to the
second serial port, type,

MOUSE /2

and press the RETURN key.

The computer responds by running the MODSE.COM pro­
gram to load the mouse software into memory. If successful,
the screen will display the message:

Mouse driver installed

You can now use the Microsoft Mouse. Remember that
when loading the mouse software manually, steps 2 and 3
should be repeated after each system reset.

13

http:MODSE.COM

Microsoft Mouse

Unsuccessful Installation

If the software installation was unsuccessful, the screen will
display one of two messages. If the screen displays,

Bad command or filename

it indicates that the MODSE.COM program is either missing
or cannot be run. To prevent this problem, make sure
MODSE.COM is on the disk you are using. Also make sure
you are installing the mouse software from the active disk
drive. Then, repeat steps 2 and 3. If you receive the message
again, the problem is possibly a damaged disk.

If the mouse is improperly installed or there are other hardware
problems related to the serial port, the screen will display:

Mouse: Serial card not found

If you receive this message, check to see that the serial communi­
cations interface board is correctly installed and working. See
the board's technical manual for instructions on testing the
interface board. If the board is not functioning properly, contact
your computer dealer for help.

14

http:MODSE.COM
http:MODSE.COM

Installation

Automatic Installation

Automatic installation permits you to bypass the steps required
to load the mouse software manually. Automatic installation
consists of a system disk containing the DOS and a special file
that directs the computer to load the mouse software each time
the operating system is loaded into memory.

Creating a system disk for automatic installation of the mouse
software consists of the following three steps:

1. 	 Copy the appropriate mouse files onto each system disk
you plan to use with the mouse.

2. 	 Add the appropriate command line to either of the following:
AUTOEXEC.BAT file (DOS versions Lx) or CONFIG.SYS
file (DOS versions 2.x).

3. 	 Test the system disk by performing a system reset.

The following procedures show how to add the mouse software to
system disks. Use the procedure that is appropriate for your
DOS version. If necessary, refer to the operating system manual
for help with the utilities used in this procedure.

15

Microsoft Mouse

DOS Versions 1.x Installation Procedure

1. 	 Insert the desired system disk into drive A. You will use
this disk to automatically install the mouse software when
DOS is loaded into memory.

2. 	 Turn on the power to the computer, or if the power is
already on, perform a system reset. When the computer has
completed its self-test, enter the time and date (or just
press the RETURN key for each prompt) until you see the
A> prompt.

3. 	 Insert the mouse disk into drive B. If you have a single­
drive system, remove the system disk and insert the
mouse disk into drive A. Follow the instructions on the
screen for changing disks. If you are unsure as to how to
copy files with a single-drive system, see the IBM DOS
manual for instructions.

4. 	 Copy the MOUSE.COM file onto the system disk.

Note

If you don't have an AUTOEXEC.BAT file on your
system disk, copy A UTOEXEC.BAT from the mouse
disk to your system disk.

5. 	 Remove the mouse disk from drive B and load a word
processing program or text editor into memory.

6. 	 If the mouse is connected to the first serial port, use a word
processing program or text editor to insert the following
command line into the AUTOEXEC.BAT file:

MOUSE /1

If the mouse is connected to the second serial port, substi­
tute MOUSE /2 for MOUSE /1.

16

http:MOUSE.COM

Installation

7. 	 Repeat Steps 1 through 6 for each system disk that you
plan to use with the mouse.

8. 	 Test the AUTOEXEC.BAT file by performing a system
reset. If the mouse software is loaded successfully, you will
see the message:

Mouse driver installed

If unsuccessful, check the AUTOEXEC.BAT file for errors
and try the procedure again. If unsuccessful again, see
"Unsuccessful Installation" in the preceding section.

You now have a system disk that will automatically install the
mouse software each time you load the operating system.

DOS Versions 2.x Installation Procedure

1. 	 Insert the desired DOS 2.x system disk into drive A. You
will use this disk to automatically install the mouse soft­
ware when DOS is loaded into memory.

2. 	 Turn on the power to the computer, or if the power is
already on, perform a system reset. When the computer has
completed its self-test, enter the time and date (or just
press the RETURN key for each prompt) until you see the
A> prompt.

3. 	 Insert the mouse disk into drive B. If you have a single
drive system, remove the system disk and insert the mouse
disk into drive A. Follow the instructions on the screen for
changing disks. If you are unsure as to how to copy files
with a single drive system, see the IBM DOS manual for
instructions.

4. 	 Copy the MOUSE.SYS file onto the system disk.

5. 	 Remove the mouse software disk from drive B and load a
word processing program or text editor into memory.

17

\\

Microsoft Mouse

6. 	 If the mouse is connected to the first serial port, use the
word processing program or text editor to insert the follow­
ing command line into the CONFIG.SYS file:

DEVICE = MOUSE.SYS /1

If the mouse is connected to the second serial port, substi­
tute MOUSE.SYS /2 for MOUSE.SYS /1.

7. 	 Repeat the steps 1 through 6 for each system disk that you
want to use with the mouse.

8. 	 Test the CONFIG.SYS file by performing a system reset. If
the mouse software is loaded successfully, you will see the
message:

Mouse driver installed

If unsuccessful, check the CONFIG.SYS file for errors, and
repeat the procedure. If unsuccessful again, see "Unsuccess­
ful Installation" in the preceding section.

You now have a system disk that will automatically install the
mouse software each time you load the operating system.

Backup Copies

I t is always good practice to make a backup copy of a disk. If you
do not have a copy of the Microsoft Mouse disk, use the following
procedure to make a backup copy of the disk:

1. 	 Use the FORMAT program to format a new disk.

2. 	 Use the DISKCOPY program to copy the files on the
mouse disk to the new disk.

3. 	 Label the new disk "Microsoft Mouse."

To use the FORMAT and DISKCOPY programs, follow the
instructions in the IBM Disk Operating System manual.

Store the original mouse disk in a cool, dry place away from
. direct sunlight.

18

Chapter 3

How to Use the Mouse

Basic Techniques 21

Mouse Anatomy 21

Mouse Surface Requirements 22

Holding the Mouse 23

Moving the Mouse/Controlling the Cursor 23

Demonstration Programs 25

Program 1: Piano 26

Program 2: The Game of Life 29

Placing and Removing Cells on the Grid 30

The Commands 31

Selecting and Entering Commands 32

Playing the Game 34

19

How to Use the Mouse

In this chapter, you will learn the basic techniques of using the
mouse, and practice these techniques using two demonstration
programs, Piano and The Game of Life.

Basic Techniques

The Microsoft Mouse takes just a few minutes to learn. If you
have never used a mouse, the following sections will help you get
acquainted. If you have used a mouse before, these sections will
indicate differences between the Microsoft Mouse and other
mouse devices.

Mouse Anatomy

Before using the Microsoft Mouse, it is a good idea to examine its
working parts. Using Figure 3.1, locate the left and right buttons.
The buttons permit you to make selections when presented with
choices by a program. When you press and release a button, the
mouse passes this information to the program.

Bottom Top

Figure 3.1 Mouse Ball and Buttons

21

Microsoft Mouse

A button's function depends on how the current program has
defined it. Just like the programmable keys on a keyboard, the
function of a button can change from program to program.

Again using Figure 3.1, turn the mouse upside down and locate
the ball. The ball controls the movement of the cursor on the
screen. When you hold the mouse top side up and slide it across a
hard, flat surface, the ball rolls within its socket. The mouse
translates this rolling into directional data and passes it to the
mouse software to move the cursor on the screen.

The Microsoft Mouse is enclosed in a tough and durable plastic
case. Although it can survive a fall from a desk top, take care to
safeguard against falls and other accidents that might shorten
its operating life.

Mouse Surface Requirements

Use the mouse on any hard, flat surface, such as a desk. We re­
commend placing the mouse right beside the keyboard since
most programs that use the Microsoft Mouse combine both the
mouse and the keyboard for input. But any configuration which
is comfortable for you and any surface which is hard and flat is
fine.

The mouse depends on free movement in all directions, so make
sure that there is adequate space for uninterrupted movement of
the mouse and your arm. For most programs, a clear space of ten
by ten inches is fine.

For best performance, make sure that the surface is free of dirt
and lint. The mouse requires good contact between the ball and
the surface to work well. Also, do not use the mouse on sticky or
wet surfaces. A sticky surface can cause buildup on the ball and
prevent it from rolling freely in its socket. A wet surface can lead
to a short in the internal circuitry, damaging the mouse.

Note that some accumulation of dirt and lint in the mouse is
unavoidable and can impair mouse performance. You can remove
an accumulation of dirt by cleaning the mouse. See Appendix A,
"Cleaning Instructions."

22

How to Use the Mouse

Holding the Mouse

The Microsoft Mouse is designed to be easily held in either the
right or the left hand. To hold the mouse:

1. 	 Place your palm over the Microsoft logo on the mouse
body.

2. 	 Hold your index and middle fingers over the buttons.

3. 	 Grip the mouse with your thumb and free fingers.

Grip the mouse tightly enough to be able to lift it off the surface.
Your index and middle fingers should be relaxed but ready to
press the buttons.

Moving the Mouse/Controlling the Cursor

The Microsoft Mouse controls the motion of the cursor when a
program that uses the mouse is running. The shape of the cursor
and its starting point on the screen depend on the program, but
the way the cursor moves on the screen is the same for all
programs.

To move the cursor, simply move the mouse in the direction that
you wish the cursor to move. All motions of the cursor are
relative to the front of the mouse (where the buttons are located).
Pushing the mouse to the front moves the cursor to the top of the
screen. Pulling in the opposite direction moves the cursor to the
bottom of the screen. Unlike the direction keys on the keyboard,
the mouse permits you to move the cursor in any direction, even
diagonally. Figure 3.2 illustrates ways that you can move the
mouse and the corresponding cursor motions.

23

Microsoft Mouse

°u<:J

Movement of
cursor on screen
corresponds to
movement of
mouse on table
or desk

Figure 3.2 Mouse and Cursor Motions

The cursor moves only when the mouse moves across the sur­
face. The location of the mouse on the surface is immaterial. This
means that you can lift the mouse off the surface and return it to
its starting point without returning the cursor to its starting
point. This feature is useful when you are moving the cursor all
the way across the screen. The move can be an accumulation of
short strokes instead of one long stroke.

24

How to Use the Mouse

Demonstration Programs

The three demonstration programs, Doodle, Piano, and The
Game of Life, are designed to let you practice and master the
basic techniques of the Microsoft Mouse. Piano and Life are
explained in the following sections.

Doodle is a graphics demonstration program for sketching differ­
ent shapes on your computer screen. A special file (HOKUSAI)
has been included on the mouse software disk to show what can
be created with Doodle. For instructions on how to use Doodle,
see the Doodle manual which is part of the Microsoft Mouse
package.

To load a demonstration program, type the filename at the
keyboard and press the RETURN key. The filenames of these
programs are:

DOODLE
PIANO
LIFE

Remember, if the Microsoft Mouse software disk is not in the
default drive, you must precede the filename with a drive name.

Note

The Game of Life runs only on an IBM Personal Computer
that has a Color/Graphics Monitor Adapter.

When the program is loaded and execution has begun, you will
see the game screen and the mouse cursor. We recommend trying
Piano first to learn how to move and control the cursor. Then try
The Game of Life to learn how to use the Microsoft Mouse to
select commands in a program.

25

Microsoft Mouse

Program 1: Piano

Piano lets you play music at a video keyboard. The game screen
consists of a keyboard (21 white keys and 15 black keys) and a
"quit" box in the lower right corner.

MICROSOFT

r-­ r-r-­ r-r­ r-r­ r-r­ r-r­ r­

~ V

I V
/

BlackWhite I
keyskeys

Icursor~A ~IQUITI

Figure 3.3 Piano Screen

The cursor is in the middle of the screen just below the keyboard.
Practice moving the cursor by moving the mouse from side to
side. Notice how just a small motion of the mouse moves the
cursor quickly and accurately. With just a little practice you can
pinpoint even the smallest objects on the screen.

Don't be afraid to move the cursor to the edge of the screen. The
screen edge forms a boundary beyond which the cursor will not
pass.

26

How to Use the Mouse

The notes of the white keys range from low C on the left to high B
on the right. The black keys are the sharps and flats between
these notes. To play a note, use the mouse to move the cursor
over the key that you want and press the left button. Note that
the tip of the cursor must be within the boundaries of the key.

For example, to play middle C move the cursor to the eighth
white key from the left and press the left button.

MICROSOFT

Move cursor to
key to be played

Press left button
to play Middle C

Figure 3.4 Playing the Piano

The computer responds by playing a middle C. The note plays as
long as you hold the button down and stops as soon as you
release the button.

Play another note by moving the cursor to another key and
pressing the left button. Each note you choose plays as long as
you hold the button down. If you move the cursor off the keyboard
and press the button, no note will play.

27

Microsoft Mouse

Moving the cursor to a key and pressing the button is a method
of selection. Many programs use this method to allow you to
choose a program action from a menu of commands. You simply
move the cursor to the word, command, or symbol that repre­
sents the action and press the button. This method is faster and
easier than typing command letters or names at the keyboard.

Now return the cursor to middle C. To play an octave higher,
you can either move eight white keys to the right, or leave the
cursor where it is and press the mouse's right button. In Piano,
the right button always plays a note one octave higher than the
current note.

Choosing to press one button instead of another is a method of
selecting options within a given action-in this case, choosing to
play the octave above instead of the note itself. Many programs
use this method to permit you to select between options in a
command.

Starting at low C (the white key on the far left), press the left
button and hold it down while you move the cursor across the
keyboard. As the cursor moves from one key to the next, the
notes change instantly and you hear a rapid series of notes. Try
the right button, too.

Holding a button down while you move the cursor is a method of
extending an action across the screen - in this case, extending
the action "play" from one key to the next. Many programs use
this method to allow you to mark the range of a specific action.
For example, if the action is drawing a line, you can mark the
starting point, the line's path, and its ending point.

When you have finished playing Piano, move the cursor to the
quit box and press the left button. The computer responds by
leaving Piano and displaying the system prompt.

28

How to Use the Mouse

Program 2: The Game of Life

The Game of Life lets you simulate the growth and death of
cultures of living cells. The game consists of a 20- by 39-line grid,
a command line, and a message line.

~OMMAND,"~~Sele" 'p"'"'\c mood lett" \,\FE
\ \

I ~ommand I I ~essage J I Command '" Cursor Jline line highlight ~
Figure 3.5 Life Screen

29

Microsoft Mouse

The object of the game is to place cells in the squares of the grid
and watch how they interact generation after generation.

The Game of Life has three simple rules:

1. 	 Survival. Every cell with two or three adjacent neighbors
(vertically, horizontally, or diagonally) survives for the
next generation.

2. 	 Birth. Each empty square adjacent to exactly three live
cells is a birth square. A new cell appears there in the next
generation.

3. 	 Death. Each cell with four or more neighbors dies from
overpopulation. Each cell that has one or zero neighbors
dies from isolation. Any cell that dies leaves an empty
square in the next generation.

As simple as these rules are, the game presents a surprising
complexity in the interactions of the cells. In many cases, the
cells pass through several different patterns before settling down
to stable or oscillating patterns, or disappearing completely
from the screen. In a few cases, the cells grow indefinitely,
sometimes gliding across the screen, sometimes making an infi­
nite number of replicas of themselves.

Placing and Removing Cells on the Grid

Each square in the grid represents the space in which one cell can
live. At the beginning of the game, the grid is blank. To place a
cell in a square, touch the tip of the cursor to the square and press
the left button. (In The Game of Life the right button has no
effect.)

30

How to Use the Mouse

1--.
~

\

COMMAND: Blan .. IGo Halt QUIt Step I.J
Select option or type command letter L I FE

Figure 3.6 Placing a Cell

If you want to place many cells in the grid at once, move the
cursor across the grid while holding down the left button. Be sure
to start with the cursor in an empty cell. Cells will continue to be
placed in the grid until you release the button.

Cells can only live and grow within the boundaries of the grid. If
you try to place a cell outside of the grid, a warning tone sounds.

If you want to remove a cell from a square, touch the tip of the
cursor to the cell and press the left button. To remove many cells
at once, move the cursor over cells in the grid while holding down
the left button. Be sure to start with the cursor in a square that
has a cell. Cells will continue to be removed until you release the
button.

The Commands

The Game of Life has five commands that control the action of
the game. Each command has a command word that appears in
the command menu below the grid.

31

Microsoft Mouse

The Blank command removes all cells from the grid and resets
the generation count to zero. Use the Blank command whenever
you want to start a new cell culture.

The Go command starts the game, giving life to the cells you
have placed in the grid. When you select Go, the grid changes to
reflect the survivals, births, and deaths of the first generation of
cells, then the second, and so on through each successive genera­
tion. As the grid changes, the message line keeps a count of the
number of generations that have passed. The generations con­
tinue (even if no cells remain) until you stop Life by selecting the
Halt command.

The Halt command stops the game after you have started it with
a Go command. When you select Halt, all action on the screen
stops and the message line tells you the number of the generation
now on the screen. After the Halt command, you may use Go to
continue Life, Step to continue one more generation of Life, or
Blank to clear the grid. You can also place or remove cells from
the grid.

The Step command starts the game like the Go command but
sustains it for one generation only. When you select Step, the
grid changes to reflect the survivals, births, and deaths of one
generation and then all action stops. The message line displays
the number of the generation now on the screen.

The Quit command ends the game. When you select Quit, the
message "Enter Y to confirm" appears in the message line. Type
Y to end The Game of Life; press the CANCEL (ESC) key to
continue.

Selecting and Entering Commands

There are three ways to select and enter commands:

1. 	 Move the cursor to the word in the command menu and
press and release the left button on the mouse,

2. 	 Type the command letter (first letter of the command
word), or

3. 	 Use the space bar or TAB key to move the menu highlight to
the command word and then press the RETURN key.

32

How to Use the Mouse

The most convenient method is to move the cursor to the word in
the command menu and press and release the left button.

To practice this method, select the Go command. After placing
cells in the grid, move the cursor so that its tip touches the word
"Go" in the command menu, then press the left button. Be
careful to touch the tip to the word; if it does not touch you will
get a warning tone.

-
/

COMMAND: BlankfG iHalt Quit Step

Select option or type command letter LIFE

Press and release
to Go command
Move cursor

left button to
execute command

Figure 3.7 Selecting the Go Command

To stop the action, use the cursor to select the Halt command.

Try selecting the Go command using another method. The effect
is the same, but you might find that using the keyboard is
cumbersome compared to using the mouse.

33

Microsoft Mouse

Playing the Garne

The Game of Life is a game of discovery. Since in most cases the
outcome is unpredictable, a large part of the charm of the game is
discovering just what a certain pattern will do.

When playing the Game of Life for the first time, we recommend
that you start small-with three cells-and combine them in as
many patterns as possible before moving on to more cells. In this
way, you will discover the basic patterns that develop into stable
(unchanging), oscillating, and disappearing cultures.

The G arne of Life was first suggested in 197 °by John Con way. It
quickly became a popular simulation game for computers. Since
that time, many patterns have been discovered that give interest­
ing results. The illustrations on the following pages show some
of these patterns so that you may try them yourself. For
descriptions of more patterns and for a discussion of the mathe­
matics of The Game of Life, see "Mathematical Games" by M.
Gardner, Scientific American, Vol. 223, October 1970, p.120 and
"Mathematical Games" by M. Gardner, Scientific American,
Vol. 224, February 1971, p. 112.

34

How to Use the Mouse

Wg/lia\! rnlW,*I!
~~ fs;; iii [Ii Iii; !!lll ~llIj ~i;1R!!U~ r!ll~
~twf1j 1<· Wi!'Iwl! f01IFittJ Ii.

Ijji 1.& fii

Block

llillill

ti£IWi
i§,Pi@

121
[if

1,1 ,f)

VWI"(,
1m.

li,wl
t;;11'1;!

1?&f1j:
L!;; IY~

~" ! m

I&?

~)(

I "
f%,I1i! lii1!!

[&!l1i

Itt!

Tub Beehive

Figure 3.8

Snake Saw

Stable Patterns

Barge

Blinker Tumbler Figure 8 Clock

Figure 3.9 Oscillating Patterns

35

Microsoft Mouse

iii

;Z1i ve.

Glider Lightweight Mediumweight Heavyweight
spaceship spaceship spaceship

Figure 3.10 Glider and Space Ships

TOP Traffic Fuse Capped z
ROW lights fuse

BOTTOM Cheshire cat Harvester
ROW (watch for grin

generation 6)

Figure 3.11 Patterns with Interesting Lives

36

Chapter 4

Mouse Interface and System Calls

Mouse Interface 39

The Screen Modes 40

The Virtual Screen 41

The Graphics and Text Cursors 42

The Graphics Cursor 43

The Graphics Cursor "Hot Spot" 44

The Software Text Cursor 45

The Hardware Text Cursor 46

The Buttons 47

The Mouse Unit of Distance: The Mickey 47

The Internal Cursor Flag 48

Making Mouse System Calls 49

Making Calls From the BASIC Interpreter 49

Making Calls From

Assembly Language Programs 51

Making Calls From High-Level Languages 52

Sample Program 53

37

Microsoft Mouse

Function Descriptions 54

0: 	 Mouse Installed Flag and Reset 56

1: Show Cursor 57

2: 	 Hide Cursor 58

3: 	Get Mouse Position and Button Status 59

4: 	 Set Mouse Cursor Position 60

5: 	 Get Button Press Information 61

6: 	Get Button Release Information 62

7: 	 Set Minimum and

Maximum Horizontal Position 63

8: 	Set Minimum and

Maximum Vertical Position 64

9: 	 Set Graphics Cursor Block 65

10: 	Set Text Cursor 67

11: Read Mouse Motion Counters 68

12: 	Set U ser-Defined

Subroutine Input Mask 69

13: 	 Light Pen Emulation Mode On 71

14: 	 Light Pen Emulation Mode Off 72

15: 	Set Mickey/Pixel Ratio 73

16: Conditional Off 74

19: 	Set Double Speed Threshold 75

38

Mouse Interface and System Calls

This chapter provides the information you need to incorporate
the Microsoft Mouse into your application programs. It de­
scribes:

The interface between your computer's screen and Micro­
soft Mouse software.

The steps required to make mouse system calls from
BASIC, assembly, and high-level language programs.

The input, output, and operation of the mouse function
system calls.

A sample BASIC program illustrating the use of the mouse
functions.

Mouse system calls are easy to incorporate in new and existing
application programs. To make full use of the system calls, we
recommend that you carefully read each section and pay close
attention to the sample program described in Appendix B of
this manual.

Mouse Interface

This section describes the interface between the mouse software
and the IBM Personal Computer. In particular, it describes how
the mouse software uses the resources of the personal computer
to create a cursor on the screen and control its movement. This
section defines:

1. The screen modes

2. The virtual screen

3. The graphics and text cursors

4. The buttons

5. The mouse unit of distance: the mickey

6. The internal cursor flag

39

Microsoft Mouse

Since many of the mouse functions make use of the interface, it is
important that you understand it before using the functions.
Read the following sections carefully before trying to use the
functions in your application programs.

The Screen Modes

The mouse software works with all four screen modes of the IBM
Personal Computer. The screen modes define the number of
pixels (points of light) on the screen and the types of objects you
can see on the screen. The screen modes are:

1. High-resolution graphics mode

2. Four-color graphics mode

3. 80-column text mode

4. 40-column text mode

In high-resolution graphics mode, there are 128,000 pixels on the
screen, each capable of being either white or black. You can
control the color of each individual pixel; that is, you can change
the color of a pixel without affecting its neighbors. This allows
you to create any image on the screen that you want.

In four-color (medium resolution) graphics mode, there are only
64,000 pixels on the screen. Each pixel can be individually con­
trolled, and each is capable of being one of four colors. This
allows you to create images with color.

In 80-column text mode, the screen is divided into 25 lines of text
characters, with 80 characters in each line. Although there are
128,000 pixels on the screen, the pixels cannot be individually
controlled, as in the graphics modes. The only way to change the
screen is by changing the characters on the screen. Note that
each 8- by 8-pixel group forms a single character.

In 40-column text mode, the screen is divided into 25 lines of text
characters, with 40 characters in each line. There are 64,000
pixels on the screen, and the pixels cannot be individually con­
trolled. To change the screen you must change the characters on
the screen. In this mode, each 16- by 8-pixel group forms a single
character.

40

Mouse Interface and System Calls

The screen modes available on your IBM Personal Computer
depend on your adapter. If your computer has the Color/Graph­
ics Monitor Adapter, all four screen modes are available. If you
have the Monochrome Display and Printer Adapter, only the 40­
and 80-column text modes are available.

The Virtual Screen

The mouse software operates on the IBM Personal Computer
screen as if it were a "virtual screen" of 128,000 individual points
arranged in a matrix of 640 horizontal by 200 vertical points.
Whenever it refers to the location of an object on the screen (for
example, a pixel or a character), no matter what the mode, it
gives that object's location as a pair of coordinates on the virtual
screen. For example, a pixel in the upper left comer of the screen
has the coordinates (0,0) and a character at the center of the
screen has the coordinates (320,100). Each pair of coordinates
defines a point on the virtual screen. The horizontal coordinate is
given first.

In high-resolution graphics mode each point in the virtual screen
has a one-to-one correspondence with each pixel on the screen. In
this mode, the full range of coordinates, from (0,0) to (639,199), is
permitted.

In four-color graphics mode, there are half the number of pixels
on the screen as in high-resolution graphics mode. To compen­
sate, the mouse software uses even-numbered horizontal coordi­
nates only. This means every other point in the virtual screen
corresponds to a pixel.

In 80-column text mode, only characters are permitted on the
screen. There are still 128,000 pixels on the screen, each corres­
ponding one-to-one with the points in the virtual screen, but
because the individual pixels in a character cannot be accessed,
the mouse software uses just one pair of coordinates to refer to
the location of a character. The coordinates used are the coordi­
nates of the pixel in the upper left corner of the character. For
example, the character in the upper left corner of the screen has
the coordinates (0,0), the next character horizontally has the
coordinates (8,0), and so on. Since each character in this mode is
an 8- by 8-pixel group, both the horizontal and vertical coordi­
nates are multiples of eight.

41

Microsoft Mouse

In 40-column text mode, the mouse software again uses the
coordinates of just one pixel in a character to refer to the location
of the character. But there are half the number of pixels as in
80-column text mode. To compensate, the mouse software uses
horizontal coordinates that are multiples of sixteen. For exam­
ple, the character in the upper left corner of the screen still has
the coordinates (0,0), but the character next to it has the coordi­
nates (16,0).

There are many mouse functions that take coordinates as input
or return coordinates as output. Whenever you make a reference
to a pixel or character in a function, make sure that the horizon­
tal and vertical coordinates are correct values for the given
screen mode. If you supply an incorrect value, the function will
round the value down before continuing. The mouse functions
always return correct values for the given screen mode.

The Graphics and Text Cursors

The mouse has three different cursors: a graphics cursor, and
two text cursors. The graphics cursor is a shape (for example, an
arrow) that moves over the images on the screen. The software
text cursor is a character attribute (for example, an underscore)
that moves from character to character on the screen. The hard­
ware text cursor is a flashing block, half-block, or underscore
that also moves from character to character on the screen. Only
one cursor can be on the screen at any given time. You can choose
which cursor is on the screen, and even switch back and forth
between cursors.

Functions 9 and 10 of the mouse system calls permit you to
define the characteristics of these cursors. You may define the
characteristics yourself, or use the characteristics of the sample
cursors listed in Appendix C. The following subsections describe
the cursors in detail.

42

Mouse Interface and System Calls

The Graphics Cursor

The graphics cursor is the cursor used when the IBM Personal
Computer is in high-resolution or four-color graphics mode. The
graphics cursor is a block of pixels. In high-resolution graphics
mode, it is 256 pixels in a 16- by 16-pixel square. In four-color
graphics mode, it is 128 pixels in an 8- by 16-pixel square. As you
move the mouse, the block moves over the screen and interacts
with the pixels directly under it. This interaction creates the
cursor shape and background.

The interaction between the cursor points and screen pixels is
defined by two 16- by 16-bit arrays called the screen mask and
the cursor mask. In high-resolution mode, each bit in a mask
corresponds to one pixel in the cursor block. In four-color graph­
ics mode, each pair of bits corresponds to a pixel. The screen
mask determines whether the cursor pixel is part of the shape or
background. The cursor mask determines how the pixel under
the cursor contributes to the color of the cursor.

To create the cursor, the mouse software operates on the data in
the IBM Personal Computer's screen memory that defines the
color of each pixel on the screen. First, the software logically
ANDs the screen mask with the 256 bits of data that define the
pixels under the cursor. Then, it logically XORs the cursor mask
with the result of the AND operation. Table 4.1 shows how these
operations affect the individual screen bits.

Table 4.1

Mask Bit Values and Screen Result

if the screen if the cursor the resulting
mask hit is: mask hit is: screen hit is:

0 0 0
0 1 1
1 0 unchanged
1 1 inverted

43

Microsoft Mouse

In high-resolution mode, each screen bit defines the color of a
single pixel, so just one bit in the screen mask and one bit in the
cursor mask define the pixel's color when the cursor is over it. For
example, if the first bit in the screen mask is 1 and the first bit in
the cursor mask is 0, then the upper left corner of the cursor block
is transparent.

In four-color graphics mode, each pair of screen bits defines the
color of a pixel, so a pair of bits in the screen mask and a pair in
the cursor mask define a pixel's color.

You can define the screen mask and the cursor mask values
explicitly by defining the masks as arrays in your program and
passing them as parameters in a call to Function 9 of the mouse
system calls. By assigning the appropriate values to the screen
mask and cursor mask, you can define any shape to the cursor
that you wish. For an example, see the description of Function 9
later in this chapter or the sample program in Appendix B.

The Graphics Cursor "Hot Spot"

Whenever a mouse function refers to the graphics cursor loca­
tion, it gives the point on the virtual screen that lies directly '----"
under the cursor's "hot spot." The hot spot is the point in the
cursor block that the mouse software uses to determine the
cursor coordinates.

You can define which point in the cursor block will be the hot spot
by passing the horizontal and vertical coordinates of the point
to Function 9. In both high-resolution and four-color graphics
mode, the coordinates must be within the range - 16 to 16, but in
four-color graphics mode, the horizontal coordinate must be an
even number. In both cases, the coordinates are relative to the
upper left corner of the cursor block.

44

Mouse Interface and System Calls

The Software Text Cursor

The software text cursor is the cursor used when the IBM
Personal Computer is in 40- or 80-column text mode. The text
cursor affects the appearance of the characters on the screen.
Unlike the graphics cursor, the text cursor usually does not have
a shape of its own; instead, it changes character attributes such
as foreground and background color, intensity, and underscor­
ing of the character directly under it. If the cursor does have a
shape of its own, it is one of the 256 ASCII characters in the IBM
Personal Computer character set.

The effect of the text cursor on the character under it is defined
by two 16-bit values called the screen mask and the cursor mask.
The screen mask determines which attributes of the character on
the screen are to be preserved. The cursor mask determines how
these attributes are to be altered to yield the cursor.

To create the cursor, the mouse software operates on the data
that defines each character on the screen. The software first
logically ANDs the screen mask and the 16 bits of screen data for
the character under the cursor. It then logically XORs the cursor
mask and the result of the AND operation.

In both 40-column and 80-column text modes, the 16 bits of
screen data for each character take the following form:

15 7 o
b bckgd foregd char

odd address (M + 1) even address (M)

where:

b sets blinking or non blinking character

bckgd sets the background color

sets high intensity or medium intensity

foregd sets the foreground color

char is the ASCII value of the character

45

Microsoft Mouse

The range of values for each field depends on the display adapter
in your computer. See the IBM Technical Reference manual for
details.

The screen and cursor masks are divided into the same fields as
shown above, so the value of these fields in the screen and cursor
masks defines the new attributes of the character when the
cursor is over it. For example, to invert the foreground and
background colors, the screen mask and cursor mask should
have the following values:

-b bckgd foregd chari -
&H77FF0 111 111 111111110Iscreen mask

cursor mask 0 111 &H77000 111 00000000

You can define the values of the screen mask and cursor mask by
passing their values as parameters in Function 10 of the mouse
system calls. For an example, see the description of Function 10
later in this chapter.

Whenever a mouse function refers to the text cursor location, it
gives the coordinates of the character under the cursor. The text
cursor does not have a hot spot.

The Hardware Text Cursor

The hardware text cursor is another cursor that can be used
when the IBM Personal Computer is in text mode.

The hardware text cursor is actually the IBM Personal Comput­
er's own cursor (the one you see after the A> prompt on the
screen). The mouse software allows you to adapt this cursor for
your own use.

The hardware cursor is 8 pixels wide and 8 to 12 pixels tall. Each
horizontal set of pixels forms a line, called a "scan line." There are
8 to 12 scan lines. A scan line can be on or off. If a line is on, it
appears as a flashing bar on the screen. If a line is off, it has no
effect on the screen. You may turn on any number of adjacent
scan lines. Gaps between scan lines are not allowed. This gives
the hardware text cursor a characteristic box or underscore
shape.

46

Mouse Interface and System Calls

You can define which lines are on and which are off by passing the
number of the first and last lines in the cursor to Function 10 of
the mouse system calls. The number of lines in the hardware
cursor depends on the display adapter in your IBM Personal
Computer. If your computer has a Color/Graphics Monitor
Adapter, the cursor has 8 lines. If your computer has a Mono­
chrome Display and Printer Adapter, the cursor has 12 lines. The
lines are numbered from 0 to 7 or from 0 to 11.

The Buttons

The mouse functions read the state of the buttons on the mouse
and keep a count of the number of times the buttons are pressed
and released.

A button state is "pressed" if the button is down, and "released"
if the button is up. When a function returns the state of the
buttons, it returns an integer value in which the first 2 bits are
set or cleared. Bit 0 represents the state of the left button, and bit
1 represents the state of the right button. If a bit is set (equal to
1), the button is down. If a bit is clear (equal to 0), the button is
up.

The mouse software has internal counters to keep track of the
number of presses and releases of a button. The software incre­
ments a counter each time the corresponding button is pressed or
released. The software sets a counter to zero after a reset (Func­
tion 0) or after a counter's contents are read (Functions 5 and 6).

The Mouse Unit of Distance: The Mickey

The motion of the mouse is translated into values that express
the direction and duration of the motion. The values are given in
a unit of distance called a "mickey," which is approximately
1/100 of an inch.

When you slide the mouse across a desk top, the mouse hardware
passes the software a horizontal and a vertical "mickey count,"
i.e., the number of mickeys the mouse ball has rolled in the
horizontal and vertical directions. The software uses the mickey
count to move the cursor a certain number of pixels on the
screen.

47

Microsoft Mouse

The number of pixels moved does not have to correspond one-to­
one with the number of mickeys the ball rolled. The mouse
software defines a "sensitivity" for the mouse, which is a ratio of
the number of mickeys required to move the cursor 8 pixels on
the screen. The sensitivity determines the rate the cursor moves
on the screen.

You can define the sensitivity of the mouse by passing a mickey
count to Function 15 of the mouse system calls. The count can be
any value from 1 to 32767. For example, if you send a count of 8,
the sensitivity is 8 mickeys per 8 pixels. That is, the cursor will
move 1 pixel for each mickey the ball rolls, or one character for
every 8 mickeys the ball rolls.

The Internal Cursor Flag

The mouse software maintains an internal flag that determines
when the cursor should be displayed on the screen. When the flag
is zero, the cursor is displayed. When the flag is any other value,
the cursor is hidden.

The flag is not directly accessible to your program. To change the
flag's value, you must use Functions 1 and 2 in the mouse system
calls. Function 1 increments the flag; Function 2 decrements it.
You may use Function 0 to reset the flag to - 1. The flag is also
reset to - 1 when you change screen modes.

Initially, the flag's value is - 1, so a call to Function 1 will cause
the cursor to be displayed. You can call either function any
number of times, but remember each call to one function requires
a subsequent call to the other to restore the flag's previous value.
For example, if the cursor is on the screen and you make five calls
to Function 2, you will have to make five calls to Function 1 to
get the cursor back on the screen.

48

Mouse Interface and System Calls

Making Mouse System Calls

This section describes how to make mouse system calls from the
BASIC interpreter, frOln assembly language programs, and from
programs in high-level languages such as COBOL, FORTRAN,
Pascal, and BASIC. The statements and/or instructions re­
quired to make the calls depend on the language of your applica­
tion program.

You can also let the mouse software call a subroutine in your
program whenever a specific condition occurs. When this capa­
bility is enabled, the mouse software interrupts whatever pro­
cess is going on and passes execution control to the subroutine
that you have specified in Function 12 of the mouse system calls.
For details, see the description of Function 12.

Making Calls From the BASIC Interpreter

To make a mouse system call from a BASIC program running
under the BASIC interpreter, you must:

1. 	 Assign the offset and segment address of the mouse soft­
ware to a pair of integer variables in your program. The
mouse entry offset and segment address are in memory. To
get these values, insert the following statements into your
program:

10 DEF SEG=O
20 MSEG =256*PEEK(51 *4+3)+PEEK(51 *4+2)
30 MOUSE=256*PEEK(51 *4+1)+PEEK(51 *4)+2
40 IF MSEG OR (MOUSE-2) THEN 60
50 PRINT "Mouse Driver not found": END
60 DEF SEG=MSEG

Be sure that the statements appear before any calls to
mouse functions.

49

Microsoft Mouse

2. 	 Use the CALL statement to make the call. The statement
should have the form

CALL MOUSE(M1%, M2%, M3%, M4%)

where MOUSE is the variable containing the entry offset of
the mouse software, and Ml%, M2%, M3%, and M4% are
the names of the integer variables you have chosen for
parameters in this call. All four parameters must appear in
the CALL statement even if no value is assigned to one or
more of them. These must be integer variables. Constants
and noninteger variables are not allowed.

To ensure that the variables are integer variables, use the
percent sign (%) as the variable name. You may also use the
DEFINT statement at the beginning of your program. For
example, the statement

10 DEFI NT A-Z

defines all variables as integer. With this statement' at the
beginning of the program, the percent sign is optional.

Example

Assuming that the variable MOUSE has the mouse software
offset, use the following statements to set the cursor position to
320 (horizontal) and 100 (vertical):

100 	 '
200 	 ' Set cursor position to (320,100)
300
400 	 M 1 % = 4 ' function number is 4
500 	 M3% = 320 ' horizontal coordinate
600 	 M4% = 100 ' vertical coordinate
700 	 CALL MOUSE(M1%, M2%, M3%, M4%)

50

Mouse Interface and System Calls

Making Calls From Assembly Language Programs

To make mouse system calls from an assembly language pro­
gram, you must:

1. 	 Load the AX, BX, CX, and DX registers with the param­
eter values.

2. 	 Execute software interrupt 51 (33H).

The AX, BX, CX, and DX registers correspond to the M1%,
M2%, M3%, and M4% parameters defined for the BASIC pro­
gram. Values returned by the mouse functions will be placed in
the registers.

Example

Use the following instructions to set the cursor position to 320
(horizontal) and 100 (vertical):

.*,

;* Set Cursor to Location (320,100)

.*,
MOV AX, 4 ;function #4
MOV ex, 320 ;set horizontal to 320
MOV OX, 100 ;set vertical to 100
INT 51 ;interrupt to mouse

This call has the same effect as the call from the BASIC program
shown in the previous example.

Note

When making a mouse system call in assembly language,
Functions 9 and 12 expect a somewhat different value for
the fourth parameter than when calling from a BASIC
program. See the description of these functions for details.

51

Microsoft Mouse

Making Calls From High-Level Languages

You can make calls from compiled COBOL, FORTRAN, Pascal,
and BASIC language programs. The call is included as an ordi­
nary procedure call in the source program. After the program is
compiled, it must then be linked with the MOUSE.LIB file on
the Microsoft Mouse software disk.

To make a mouse system call from a high-level language, you
must:

1. 	 Declare MOUSE or MOUSES as an external procedure.
Both procedures expect to be passed the addresses (not the
values) of four integer arguments, so be sure to include an
appropriate parameter list in the declarations.

2. 	 Use the normal calling conventions to make the calls. Use
the procedure MOUSE if the argument addresses are in the
same segment as the mouse software (short addresses), and
use MOUSES if the arguments are in another segment
(long addresses). If your program is in FORTRAN, use
MOUSES.

3. 	 Link the compiled program with the mouse library file
MOUSE.LIB provided on the Microsoft Mouse software
disk.

Example

In a Pascal program with long argument addresses, use the
following statement to declare MOUSES as an external pro­
cedure:

PROCEDURE MOUSES
(VARS M1 ,M2,M3,M4:INTEGER);
EXTRN;

52

Mouse Interface and System Calls

Once the procedure has been declared, use the following state­
ments to set the cursor position to 320 (horizontal) and 100
(vertical):

M1 := 4 (* Function number is 4 *)
M3 := 320 (* Horizontal position *)
M4 := 100 (* Vertical position *)
MOUSES(M1, M2, M3, M4)

The call has the same effect as the calls from the BASIC and
assembly language programs shown in the previous examples.

Sample Program

To help you learn how to use the mouse system calls, Appendix B
contains the listing of the Piano demonstration program de­
scribed in Chapter 3. We recommend that you read the listing
and refer to this chapter for details on the operation of each
function.

The Piano program listing is also in the file PIANO.BAS on
the Microsoft Mouse software disk. To see how this program
runs under the BASIC interpreter, start the interpreter, load
PIANO.BAS, and run it.

53

Microsoft Mouse

Function Descriptions

This section defines the following mouse functions in detail.

Number Function

o Mouse Installed Flag and Reset
1 Show Cursor
2 Hide Cursor
3 Get Mouse Position and Button Status
4 Set Mouse Cursor Position
5 Get Button Press Information
6 Get Button Release Information
7 Set Minimum and Maximum Horizontal

Position
8 Set Minimum and Maximum Vertical Po­

sition
9 Set Graphics Cursor Block

10 Set Text Cursor
11 Read Mouse Motion Counters
12 Set User-Defined Subroutine Input Mask
13 Light Pen Emulation Mode On
14 Light Pen Emulation Mode Off
15 Set MickeyIPixel Ratio
16 Conditional Off
19 Set Double Speed Threshold

Each description specifies the parameters required to make the
call (input) and the expected return values (output), any special
considerations to be taken, and an example illustrating how to
use the call. All examples show BASIC program segments.

54

Mouse Interface and System Calls

In the function descriptions, the parameter names Ml%, M2%,
M3%, and M4% are dummy variable names. When making a call,
use the names of the variables that you want to pass.

The dummy variable names include the percent sign (%) to
emphasize that only integer variables can be used as parameters.
Constants, single precision variables, and double precision var­
iables are not allowed.

If the function description does not specify an input for a param­
eter, you need not supply a value before making the call. If the
function description does not specify an output value for a
parameter, the parameter's value before and after the call re­
mains unchanged.

Caution

The mouse software does not check input values, so be sure
that the values you assign to the parameters before making
a call are correct for the given screen mode. If you assign
incorrect values, you will get unpredictable results.

55

Microsoft Mouse

Function 0: Mouse Installed Flag and Reset

Input Output

Ml% = 0 Ml% = mouse status
M2% = number of buttons

(always 2)

Returns the current status of the mouse hardware and software.

The mouse status is 0 (false) if the mouse hardware and software
are not installed, and is - 1 (true) if the hardware and software
are installed.

The function also resets the mouse driver to the following default
parameters:

Function Parameter

cursor position screen center
internal cursor flag - 1
graphics cursor shape/hot spot arrow/(- 1,- 1)
text cursor inverting box
user-defined call mask all zeroes
light pen emulation mode enabled
mickey to pixel ratio (horizontal) 8 to 8
mickey to pixel ratio (vertical) 16 to 8
min/max cursor position (horizontal) 0/639
min/max cursor position (vertical) 0/199

Example

To ensure that mouse hardware/software is installed and to reset
to default values:

000 '
100 ' Is Mouse present? If not, error.
200 '
300 M1%=0
400 CALL MOUSE(M1%,M2%,M3%,M4%)
500 IF NOT(M1%)THEN PRINT"Mouse not installed." : END

56

Mouse Interface and System Calls

Function 1: Show Cursor

Input Output

M1% = 1

Increments the internal cursor flag and, if the flag is 0, displays
the cursor on the screen. The cursor tracks the motion of the
mouse, changing position as the mouse changes position.

The current value of the internal cursor flag depends on the
number of calls that have been made to Function 1 and Function
2. (See the section in this chapter, "The Internal Cursor Flag.")
The default flag value is - 1, so, after a reset, a call to Function 1
will display the cursor.

Example

100 .
200 . Show the cursor.
300 .

400 M1% = 1

500 CALL MOUSE(M1%. M2%, M3%, M4%)

57

Microsoft Mouse

Function 2: Hide Cursor

Input Output

Ml% = 2

Removes the cursor from the screen and decrements the internal
cursor flag. The cursor, even though hidden, still tracks the
motion of the mouse, changing position as the mouse changes
position.

Use this function before modifying any portion of the screen
containing the cursor. This prevents the cursor from possibly
affecting the data written to the screen.

Remember that each call to this function decrements the internal
cursor flag. Each call to this function will require a subsequent
call to Function 1 to restore the flag to its previous value. (See the
section in this chapter, "The Internal Cursor Flag.")

Example

100 '
200 ' Hide the cursor
300 '
400 M1% = 2
500 CALL MOUSE(M1%, M2%, M3%, M4%)

58

Mouse Interface and System Calls

Function 3: Get Mouse Position and Button Status

Input Output

Ml% = 3 M2% = button status
M3% = cursor position

(horizontal)
M4% = cursor position

(vertical)

Returns the state of the left and right buttons and the horizontal
and vertical positions of the cursor. The button status is a single
integer value. Bits 0 and 1 represent the left and right buttons,
respectively. A bit is 1 if a button is down, and 0 if up.

The cursor positions are always within the range of minimum
and maximum values of the virtual screen. (See the section in this
chapter, "The Virtual Screen.")

Example

100 '
200 ' Get current cursor positions, check button status.
300 '
400 M1% = 3
500 CALL MOUSE(M1%, M2%, M3%, M4%)
600 IF M2% AND 1 THEN PRINT "Left button down."
700 IF M2% AND 2 THEN PRINT "Right button down."

59

Microsoft Mouse

Function 4: Set Mouse Cursor Position

Input Output

Ml% = 4
M3% = (horizontal) new cursor position
M4% = (vertical) new cursor position

Sets the cursor to the specified horizontal and vertical screen
positions. The new values must be in the horizontal and vertical
ranges of the virtual screen. If the screen is not in high resolution
mode, the values are rounded to the nearest horizontal or vertical
values permitted for the current screen mode. (See the section in
this chapter, "The Virtual Screen.")

Example

Assume that HMAX and VMAX contain the maximum hori­
zontal and vertical positions values for the virtual screen. To set
the cursor to the center of the screen:

100 '
200 ' Put cursor in center of screen

300 '

400 M1% = 4

500 M3% = I NT(H MAX/2)

600 M4% = INT(VMAX/2)

700 CALL MOUSE(M1%,M2%,M3%,M4%)

60

Mouse Interface and System Calls

Function 5: Get Button Press Information

Input Output

M1% = 5 M1% = button status
M2% = button M2% =count of button presses

M3% = cursor (horizontal) at last
press

M4% =cursor (vertical) at last
press

Returns current button status, a count of button presses since
the last call to this function, and the horizontal and vertical
position of the cursor at the last press of the button.

The parameter M2% specifies which button is checked. If set to
0, the left button is checked. If 1, the right button is checked.

The button status is a single integer value. Bits 0 and 1 represent
the left and right buttons, respectively. A bit is 1 if a button is
down, and 0 if up.

The count of button presses is always in the range 0 to 32767;
overflow is not detected. The count is set to 0 after the call.

The horizontal and vertical values are in the ranges defined by
the virtual screen. Note that these values represent the cursor
position when the button was last pressed and do not represent
the cursor's current position.

Example

100 '
200 ' Get cursor position at last button press.

300 '

400 M1% = 5

500 M2% = 0 'left button

600 CALL MOU8E(M1%, M2%, M3%, M4%)

700 IF (M1 % AND 1) THEN PRINT "Left button down."

61

Microsoft Mouse

Function 6: Get Button Release Information

Input Output

M1% = 6 M1% = button status
M2% = button M2% = count of button releases

M3% = cursor (horizontal) at last
release

M4% = cursor (vertical) at last
release

Returns current button status, a count of button releases since
the last call to this function, and the horizontal and vertical
position of the cursor at the last release of the button.

The parameter M2% specifies which button is checked. If set to
0, the left button is checked. If set to 1, the right button is
checked.

The button status is a single integer value. Bits 0 and 1 represent
the left and right buttons, respectively. A bit is 1 if a button is
down, and 0 if up.

The count of button releases is always in the range 0 to 32767;
overflow is not detected. The count is set to zero after the call.

The horizontal and vertical values are in the ranges defined by
the virtual screen. Note that these values represent the cursor
position when the button was last released and do not represent
the cursor's current position.

Example

100 .
200 . Get cursor position at last button release.
300 .
400 M1% = 6
500 M2% = 1 . right button
600 CALL MOUSE(M1%. M2%. M3%. M4%)
700 IF (M1% AND 2) THEN PRINT "Right button down."

62

Mouse Interface and System Calls

Function 7: Set Minimum
and Maximum Horizontal Position

Input Output

Ml% = 7

M3% = minimum position

M4% = maximum position

Sets the minimum and maximum horizontal cursor positions on
the screen. Subsequent cursor motion is restricted to the speci­
fied area. The minimum and maximum values are defined by the
virtual screen. (See the section in this chapter, "The Virtual
Screen.")

If the cursor is outside the area when the call is made, it moves to
just inside the area. If the minimum value is greater than the
maximum, the two values are swapped.

Example

100 '
200 ' Limit cursor to horizontal positions below 150
300 '
400 M1% = 7
500 M3% = 0
600 M4% = 150
700 CALL MOUSE(M1%, M2%, M3%, M4%)

63

Microsoft Mouse

Function 8: Set Minimum and Maximum Vertical Position

Input Output

Ml% = 8

M3%' = minimum position

M4% = maximum position

Sets the minimum and maximum vertical cursor positions on the
screen. Subsequent cursor motion is restricted to the specified
area. The minimum and maximum values are defined by the
virtual screen. (See the section in this chapter, "The Virtual
Screen.")

If the cursor is outside the area when the call is made, it moves to
just inside the area. If the minimum value is greater than the
maximum, the two values are swapped.

Example

100 '
200 ' Limit cursor to vertical positions between 100
300 ' and 150
400 '
500 M1% = 8
600 M3% = 100
700 M4% = 150
800 CALL MOUSE(M1%, M2%, M3%, M4%)

64

Mouse Interface and System Calls

Function 9: Set Graphics Cursor Block

Input Output

Ml% = 9

M2% = cursor hot spot (horizontal)

M3% = cursor hot spot (vertical)

M4% = pointer to screen and cursor masks

Defines the shape, color, and center of the cursor when in graph­
ics mode.

The function uses the values found in the screen mask and cursor
mask to build the cursor shape and color. (See the section in this
chapter, "The Graphics Cursor.") To pass the screen mask and
cursor mask in BASIC, assign their values to an integer array
and use the first element of the array as the fourth parameter in
the call (see example). To pass the screen and cursor masks in
assembly language, assign their values to two contiguous arrays
and pass the address of the first array in register DX. Be sure to
load the segment address of the arrays in the ES register before
making the call.

The cursor hot spot values must define one pixel within the
cursor. (See the section in this chapter, "The Graphics Cursor
Hot Spot.") The values must be within the range - 16 to 16.

65

Microsoft Mouse

Example

To define a cursor in high-resolution graphics mode, first define
the values to the cursor array and then make the call:

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500

Define the screen mask

CU RSOR(O,O)=&H FFFF
CURSOR(1,0)=&HFFFF
CU RSOR(2,0)=&H FFFF
CURSOR(3,0)=&HFFFF
CURSOR(4,0)=&HFFFF
CURSOR(5,0)=&HFFFF
CURSOR(6,0)=&HFFFF
CU RSOR(7 ,O)=&H FFFF
CURSOR(8,0)=&HFFFF
CU RSOR(9,0)=&H FFFF
CU RSOR(1 O,O)=&H FFFF
CURSOR(11,0)=&HFFFF
CURSOR(12,0)=&HFFFF
CU RSOR(13,0)=&HFFFF
CU RSOR(14,0)=&HFFFF
CURSOR(15,0)=&HFFFF

Define cursor mask

CURSOR(0,1)=&H8000
CURSOR(1,1)=&HEOOO
CURSOR(2,1)=&HF800
CURSOR(3,1)=&HFEOO
CURSOR(4,1)=&HD800
CURSOR(5,1)=&HOCOO
CURSOR(6,1)=&H0600
CURSOR(7,1)=&H0300
CURSOR(8,1)=&HOOOO
CURSOR(9,1)=&HOOOO
CURSOR(1 0,1)=&HOOOO
CURSOR(11,1)=&HOOOO
CURSOR(12, 1)=&HOOOO
CURSOR(13, 1)=&HOOOO
CURSOR(14,1)=&HOOOO
CURSOR(15, 1)=&HOOOO

'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111

'1000000000000000
'1110000000000000
'1111100000000000
'1111111000000000
'1101100000000000
'000011 0000000000
'0000011 000000000
'00000011 00000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000

Define cursor shape, color, and center

M1% = 9
M2% = 0 Horizontal hot spot
M3% = 0 Vertical hot spot
CALL MOUSE(M1%, M2%, M3%, CURSOR(O,O))

66

Mouse Interface and System Calls

Function 10: Set Text Cursor

Input Output

M1% = 10
M2% = cursor select
M3% = screen mask value/scan line start
M4% = cursor mask value/scan line stop

Selects the software or hardware text cursor. If the software text
cursor is selected, this function defines the character attributes
of the cursor when in text mode. If the hardware text cursor is
selected, this function defines the first and last scan lines to be
shown on the screen.

The value of the parameter M2% selects the cursor type. If the
value is 0, the software text cursor is selected. If the value is 1,
the hardware text cursor is selected.

If the software text cursor is selected, the parameters M3% and
M4% must specify the screen and cursor masks. These masks
define the attributes of a character when the cursor is over
it. (See the section in this chapter, "The Software Text Cur­
sor.") The mask values depend on the display adapter in your
computer.

If the hardware cursor is selected, the parameters M3% and M4%
must contain the line numbers of the first and last scan line in the
cursor to be show on the screen. (See the section in this chapter,
"The Hardware Text Cursor.") The line numbers depend on the
display adapter in your computer.

Example

To create a text cursor that inverts the foreground and back­
ground colors:

100 M1%=10
110 M2%=0 ' select text cursor
120 M3%=&HFFFF ' screen mask
130 M4%=&H7700 ' cursor mask
140 CALL MOUSE(M1%,M2%,M3%,M4%)

67

Microsoft Mouse

If you have installed both a color/graphics board and a
monochrome board in your computer, you can change lines 120
and 130 to read as follows:

120 M3%=&H77FF

130 M4%=&HEAOO

Function 11: 	Read Mouse Motion Counters

Input 	 Output

M1% = 11 	 M3% = count (horizontal)
M4% = count (vertical)

Returns the horizontal and vertical mickey count since the last
call to this function. The mickey count is the distance in 1/100
inch increments that the mouse has moved. (See the section in
this chapter, "The Mouse Unit of Distance: The Mickey.")

The mickey count is always within the range - 32768 to 32767. A
positive horizontal count specifies a motion to the right. A
positive vertical count specifies a motion to the bottom of the
screen. Overflow is ignored.

The mickey count is set to 0 after the call is completed.

Example

100 '
200 ' Get the mickey count

300 '

400 M1% = 11

500 CALL MOUSE(M1%, M2%, M3%, M4%)

68

Mouse Interface and System Calls

Function 12: Set U ser-Defined Subroutine Input Mask

Input Output

M1% = 12

M3% = call mask

M4% = address offset to subroutine

Sets the call mask and subroutine address for the mouse soft­
ware interrupts. The mouse software interrupts automatically,
stops execution of your program and calls the specified subrou­
tine whenever one or more of the conditions defined by the call
mask occur. On completion of the subroutine, your program will
continue execution at the point of interruption.

The call mask, a single integer value, defines which conditions
will cause an interrupt. Each bit in the call mask corresponds to a
specific condition as shown here:

Mask hit Condition

o cursor position changes

1 left button pressed

2 left button released

3 right button pressed

4 right button released

5-15 not used

To enable an interrupt for a given condition, set the correspond­
ing call mask bit to 1 and pass the mask as parameter M3%. To
disable a condition, set the corresponding bit to 0 and pass the
mask. All conditions are automatically disabled by Function o.

69

Microsoft Mouse

When the mouse software makes a call to the subroutine, it loads
the following information into the CPU registers:

Register 	 Information

AX 	 condition mask (similar to the call mask ex­
cept a bit is set only if the condition has
occurred)

BX 	 button state
CX 	 cursor position (horizontal)
DX 	 cursor position (vertical)

To use this function with the BASIC interpreter, load an assem­
bly language subroutine into memory (use the same segment as
the BASIC interpreter), assign the entry address of the subrou- .
tine to an integer variable, and pass this variable to Function 12
as the fourth parameter.

To use this function in assembly language, load the ES register
with the subroutine's segment address, and load the DX register
with the subroutine's offset.

Example

Assuming that a subroutine has been loaded into memory and
that the integer variable SKETCH has been assigned the sub­
routine's entry address, use the following statements to set up
calls on any press of the left button.

100 '
200 ' Call subroutine SKETCH on left button press
300 '
400 M1% = 12
500 M3% = &H4000
600 M4% = SKETCH
700 CALL MOUSE(M1%, M2%, M3%, M4%)

70

Mouse Interface and System Calls

Function 13: Light Pen Emulation Mode On

Input Output

M1% = 13

Enables the light pen emulation by the mouse. When the mouse
emulates the light pen, calls to the PEN function, described in
the IBM BASIC manual, will return the cursor position at the
last "pen down."

"Pen down" and "pen off the screen" are controlled by the mouse
buttons. The pen is down when both buttons are down. The pen
is off the screen when both buttons are up.

The mouse software enables light pen emulation mode after each
reset (Function 0).

Example

100 '
200 ' Enable Light Pen

300 '

400 M1% = 13

500 CALL MOUSE(M 1 %, M2%, M3%, M4%)

71

Microsoft Mouse

Function 14: Light Pen Emulation Mode Off

Input Output

M1% = 14

Disables the light pen emulation. When light pen emulation is
disabled, calls to the PEN function, described in the IBM BASIC
manual, return information about the light pen only.

Example

100 '
200' Disable Light Pen

300 '

400 M1% = 14

500 CALL MOU8E(M1%, M2%, M3%, M4%)

72

Mouse Interface and System Calls

Function 15: Set Mickey/Pixel Ratio

Input Output

Ml% = 15

M3% = mickey/pixel ratio (horizontal)

M4% = mickey/pixel ratio (vertical)

Sets the mickey to pixel ratio for mouse motion. (See the section
in this chapter, "The Mouse Unit of Distance: The Mickey.") The
horizontal and vertical ratios specify a number of mickeys per 8
pixels. The values must be in the range 1 to 32767.

The default value for the horizontal ratio is 8 mickeys to 8 pixels.
The default value for the vertical ratio is 16 mickeys to 8 pixels.
In the default setting, it takes 6.4 inches of mouse travel to move
the cursor across the screen horizontally, and 4.0 inches of travel
to move it vertically.

Example

100 '
200 ' Set mickey/pixel ratio at 16 to 8 and 32 to 8
300 '
400 M1% = 15
500 M3% = 16 ' horizontal ratio
600 M4% = 32 ' vertical ratio
700 CALL MOUSE(M1%, M2%, M3%, M4%)

73

Microsoft Mouse

Function 16: Conditional Off

Input Output

AX=16
CX = upper x screen coordinate value /

DX = upper y screen coordinate value
SI = lower x screen coordinate value
DI = lower y screen coordinate value

Function 16 defines a region on the screen for updating. If the
mouse pointer is in or moves into the defined region, Function 16
hides the mouse cursor while the region is being updated. After
calling Function 16, a subsequent call to Function 1 (Show Cursor)
is needed to show the cursor again.

The region is defined by placing the screen coordinate values in
the four parameter registers. The CX and DX registers define the
upper left corner of the region while the SI and DI registers
define the lower right corner.

Function 16 is similar to Function 2 (Hide Cursor) but is for
advanced applications that require quicker screen updates.
Because of the number of parameters required, Function 16 can
only be used in assembly language routines. To use this function
from high-level language programs, see the language reference
manual on how to call assembly language routines.

Example

;Oefine screen region for conditional off
,
MOV AX, 16 ;Load Function 16
MOV ex, 10 ;Oefine upper x value of region
MOV OX, 30 ;Oefine upper y value of region
MOV 01, 40 ;Oefine lower y value of region
MOV SI, 80 ;Oefine lower x value of region
INT 51 ;Interrupt to mouse function

;Screen update routine

MOV AX, ;Load Function 1 to show cursor
INT 51 ;Interrupt to mouse function

74

Mouse Interface and System Calls

Function 19: Set Double Speed Threshold

Input Output

Ml% = 19
M4% = Threshold·speed in mickeys/second

Function 19 sets the threshold speed for doubling the cursor's
motion on the screen. Using Function 19 will make it easier to
point at images widely separate on the screen.

Parameter M4% defines the threshold speed of the mouse. If no
value is given, a preset value of 64 mickeys per second is assigned.
If the mouse movement speed exceeds the value in M4%, cursor
motion doubles in speed. The threshold speed is set until Func­
tion 19 is called again.

The speed doubling feature is not turned off in the same sense as
a switch is turned off. It can be disabled by setting the value of
M4% to a speed sufficiently higher than the mouse can obtain
(10000 for example) and then calling Function 19.

Example

100 '
110' Set threshold to 32 mickeys/sec
120 '
130 M1% = 19
140 M4% = 32 'mickeys/seconds
150 CALL MOUSE (M1%, M2%, M3%, M4%)

1000' Turn off speed doubling
1010 M1% = 19
1020 M4% = 10000 'mickeys/seconds
1030 CALL MOUSE (M1%, M2%, M3%, M4%)

75

Appendix A

Cleaning Instructions

Even in the best of environments, the Microsoft Mouse will pick
up dirt and lint which can build up inside the ball's socket and
eventually retard mouse performance. Use the following procedure
to clean the Microsoft Mouse whenever free motion of the ball is
restricted. To clean the mouse, you will need a medium Phillips
head screwdriver, a clean, dry cloth, and a toothpick.

1. 	 Turn the power to your computer off.

2. 	 Unplug the Microsoft Mouse connector from the serial port.

3. 	 Turn the mouse upside down so that the ball is face up. See
Figure A.I.

77

Microsoft Mouse

~i9htbutton

GO

Cover fitting screw Top

Figure A.l Ball and Cover Fitting Screw

4. 	 Locate the ball retaining screw. Use the Phillips screw­
driver to remove the screw by turning counterclockwise
(CCW). Set the screw aside in a safe place.

5. 	 Holding your hand over the ball and retaining bracket, turn
the mouse rightside up. The ball and retaining bracket
should drop into your hand. If not, shake the ball loose.

78

Cleaning Instructions

Caution

Do not tap the mouse against a hard surface to loosen
the ball. It may damage the internal circuitry.

6. 	 Once the ball is free, wipe it with a clean cloth.

7. 	 Wipe away any dirt or lint inside the socket. If any lint is
clogged inside the socket, use a toothpick to loosen it. Do
not use any sharp, metallic object.

8. 	 Return the ball to its socket and place the retaining bracket
over it. Insert the retaining screw and tighten.

9. 	 Reconnect the Microsoft Mouse connector and turn power
to your computer back on.

The Microsoft Mouse cleaning procedure is now complete.

79

Appendix B

Piano Program Listing

This appendix presents the complete source to the Piano demon­
stration program. The program is written in BASIC for the IBM
Personal Computer's BASIC interpreter. The following is an
explanation of the program details:

Line Numbers Comments

1000-1090 Copyright message.

1100-1160 Set up music, clear graphics screen to
blue.

1170-1250 Read in the frequencies for the various
piano keys.

1260-1380 As explained in Chapter 4, these state­
ments link the mouse software and the
program.

1390-1430 Function 15 sets the mouse sensitivity.
With this setting, a horizontal movement
of 3.2 inches moves the cursor across the
entire screen. This relatively high sensi­
tivity permits songs to be played rapidly.
Accuracy is no problem since the piano
keys are large.

1440-1620 The integer array CURSOR contains the
screen mask and the cursor mask. The
masks define the shape and color of the
cursor. These statements define the screen
mask; the mask is set to all ones. The
mask will be logically ANDed with screen
under the cursor.

81

Microsoft Mouse

1630-1810

1820-1860

1870-1930

1940-2150

2160-2200

2210-2240

2250

These statements define the cursor mask.
The values will be exclusively ORed with
the result of the AND operation to create
the cursor shape and color. In this case,
the cursor shape is a north-pointing arrow­
head. Its color is the inverse of whatever
is below it.

Function 9 sets the cursor shape. It also
defines the cursor hot spot. In this case,
the hot spot is the tip of the arrowhead.
The mouse software will automatically
prevent the cursor hot spot from leaving
the screen.

These statements simply read in the
Microsoft logo from precalculated data.
The statements place the data on the
screen.

These statements draw the white and
black piano keys.

These statements draw the "quit" box in
the lower right corner.

Function 4 centers the cursor to just under
the piano keys.

Function 1 turns the cursor on. The cur­
sor appears on the screen and can be
moved by using the mouse.

82

2260-2290

2300-2370

2380-2430

2440-2510

2520-2570

2580-2630

2640-3050

Piano Program Listing

Function 3 gives the status of the two
mouse buttons and the location of the
cursor. This is probably the most com­
mon mouse function used in applications.

Some decision making is performed. If
both mouse buttons are up, or if the mouse
is not on the piano keyboard, then any
sound that might be playing is turned
off.

At this point, the mouse button is down
over the quit box. The program turns off
the mouse cursor, clears the screen, then
quits.

The program has determined a button is
down over the piano keyboard. These
statements determine which key the
mouse cursor is over.

The note is played by the SOUND state­
ment set with the correct frequency. This
note is played in the background as the
program loops back to line 2090.

This data contains the correct frequency
to play the musical notes.

Data to draw the Microsoft logo using
the PUT statement.

83

Microsoft Mouse

1000'
1010' THE VIRTUAL PIANO
1020'
1030' COPYRIGHT (C) 1983 BY MICROSOFT CORPORATION
1040 ' WRITTEN BY CHRIS PETERS
1050 '
1060 ' ---­
1070'
1080 ' INITIALIZE
1090 '
1100 DEFINT A-Z
1110 DIM CURSOR(15, 1),FREQ(27,2),MICROSOFT(839)
1120 KEY OFF
1130 PLAY"MF"
1140SCREEN 1
1150COLOR 1,1
1160 CLS
1170 '
1180 ' Read in the flat, normal , and sharp note frequencies
1190 '
1200 FOR J=O TO 2
1210 FOR 1=0 TO 6
1220 READ K
1230 FREQ(I,J)=K : FREQ(I+7,J)=K*2 ~

FREQ(I+14,J)=K*4: FREQ(I+21 ,J)=K*8
1240 NEXT
1250 NEXT
1260 '
1270 ' Determine mouse driver location, if not found , quit.
1280 '
1290 DEF SEG=O
1300 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2) 'Get mouse

segment
1310 MOUSE=256*PEEK(51*4+1)+PEEK(51*4)+2 'Get mouse

offset
1320 IF MSEG OR MOUSE THEN 1370
1330 PRINT'Mouse driver not found "
1340 PRINT 'Not found

so print error.
1350 PRINT"Press any key to return to system "
1360 I$=INKEY$: IF 1$ =" "THEN 1360 ELSE SYSTEM
1370 DEF SEG = MSEG ' Set mouse segment
1380 M1 =0: CALL MOUSE(M1 ,M2,M3,M4) ' Initialize the mouse
1390 '
1400 ' Set mouse sensitivity
1410 '

84

Piano Program Listing

1420 M1 = 15: M3=4: M4=8
1430 CALL MOUSE(M1 ,M2,M3,M4)
1440'
1450 ' Define the "logical and" cursor mask
1460'
1470 CURSOR(O,O)=&HFFFF
1480 CURSOR(1,0)=&HFFFF
1490 CURSOR(2,0)=&HFFFF
1500 CURSOR(3,0)=&HFFFF
1510 CURSOR(4,0)=&HFFFF
1520 CURSOR(5,0)=&HFFFF
1530 CURSOR(6,0)=&HFFFF
1540 CURSOR(7,0)=&HFFFF
1550 CURSOR(8,0)=&HFFFF
1560 CURSOR(9,0)=&HFFFF
1570 CURSOR(10,0)=&HFFFF
1580 CURSOR(11 ,O)=&HFFFF
1590 CURSOR(12,0)=&HFFFF
1600 CURSOR(13,0)=&HFFFF
1610 CURSOR(14,0)=&HFFFF
1620 CURSOR(15,0)=&HFFFF
1630 '

, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111

1640 ' Define the "exclusive or" cursor mask
1650 '

1660 CU RSOR(0,1)=&H0300

1670 CURSOR(1,1)=&H0300

1680CURSOR(2,1)=&HOFCO

1690 CURSOR(3,1)=&HOFCO

1700CURSOR(4,1)=&H3FFO

1710 CURSOR(5,1)=&H3FFO

1720 CURSOR(6,1)=&HFCFC

1730 CU RSOR(7,1)=&HCOOC

1740 CU RSOR(8,1)=&HOOOO

1750 CURSOR(9,1)=&HOOOO

1760 CU RSOR(1 0,1)=&HOOOO

1770 CURSOR(11, 1)=&HOOOO

1780 CU RSOR(12, 1)=&HOOOO

1790 CURSOR(13, 1)=&HOOOO

1800 CU RSOR(14, 1)=&HOOOO

1810 CURSOR(15,1)=&HOOOO

1820 '

1830 ' Set the mouse cursor shape

1840 '

1850 M1 = 9: M2 = 6: M3 = 0

, Binary 0000001100000000
, Binary 0000001100000000
, Binary 0000111111000000
, Binary 0000111111000000
, Binary 0011111111110000
, Binary 0011111111110000
, Binary 1111110011111100
, Binary 1100000000001100
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

1860 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

1870 '

1880' Draw the MICROSOFT logo from pre-calculated data

1890 '

85

Microsoft Mouse

1900 FOR 1=0 TO 779
1910 READ MICROSOFT(I)
1920 NEXT
1930 PUT(62,0),MICROSOFT,PSET
1940'
1950 ' Initial ize keyboard size parameters
1960 '
1970 YL = 60 : WKL = 80 : B KL = 45 : KW = 15 : WKN = 21
1980XL=320- KW*WKN :YH =YL+WKL:XH =319: BKW2=KW3
1990 QX = 272: QY = 176
2000 '
2010 ' Draw the white keys
2020'
2030 LINE (XL,YL)- (XH,YH),3,BF
2040 FOR I=XL TO XH STEP KW
2050 LI N E (I ,YL)- (I ,YH),0
2060 NEXT
2070 '
2080 ' Draw the black keys
2090'
2100 C=6
2110 FOR X=XL TO XH STEP KW
2120 C=C+1 : IF C=7 THEN C=O
2130 IF C=O OR C=3 THEN 2150
2140 LlNE(X- BKW2,YL)- (X+ BKW2,YL + BKL),2,BF
2150 NEXT
2160 '
2170 ' Draw the quit box
2180 '
2190 LlNE(QX,QY)- (319, 199),3,B
2200 LOCATE 24,36: PRINT"Quit";
2210 '
2220 ' Set mouse cursor location, then turn on cursor
2230 '
2240 M1 = 4: M3 = 320: M4 = 160: CALL MOUSE(M1 ,M2,M3,M4)
2250 M1 = 1 : CALL MOUSE(M1 ,M2,M3,M4)
2260 '
2270' MAIN LOOP
2280 '
2290M1 =3:CALLMOUSE(M1 ,BT,MX,MY) 'Getmouselocation

and button status
2300 IF (BT AND 2) THEN OTV=7 : GOTO 2340

, If right button down, set high octave
2310 IF (BT AND 1) THEN OTV=O: GOTO 2340

, If left button down, set lower octave
2320 SOUND 442,0 ' If both buttons up, turn off sound
2330 GOTO 2290 ' Keep looping ...
2340 MX = MX2 ' Correct for medium resolution screen

86

Piano Program Listing

2350 IF MX < = XLOR MY < YL THEN 2320 , If above keyboard,
turn off sound

2360 IF MY < = YH THEN 2470 ' If on keyboard ,
play sound

2370 IF MY < QY OR MX < QX THEN 2320 'If above quit box,
turn off sound

2380 '
2390 ' Button down inside the quit box
2400 '
2410 M1 =2: CALL MOUSE(M1 ,M2,M3,M4) 'Turn off mouse

cursor
2420 CLS , Clear screen
2430 END , Quit
2440 '
2450' Button down over keyboard, determine which key
2460 '
2470 WKY = (MX- XL)KW+OTV : R = 1 , Get which white

key cursor is over
2480 IF MY > YL+BKL THEN 2560 , Is it lower than

the black keys?
2490 MK=(MX- XL) MOD KW , No, get which

side of key
2500 IF MK < = BKW2 THEN R=O: GOTO 2560 ' Is it the left

black key?
2510 IF MK > = KW- BKW2 THEN R=2 , Is it the right

black key?
2520 '
2530' Play the note. For BASIC interpreter duration = 2
2540 ' For BASIC compiler duration = 1
2550 '
2560 SOUND FREQ(WKY,R),2
2570 GOTO 2290 ' Continue looping
2580 '
2590 ' Musical note frequencies
2600 '
2610 DATA 131,139,156,175,185,208,233
2620 DATA 131,147,165,175,196,220,247
2630 DATA 139,156,165,185,208,233,247

87

Microsoft Mouse

2640 '
2650 ' Data to draw the MICROSOFT logo
2660 '
2670 DATA 462,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2680 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2690 DATA 0,0,0, - 193,240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2700 DATA 0,0,0,0,0,768,- 1,0,0,0,0,3840,- 1,- 16129,0,

- 253,0,0,- 193,240
2710 DATA 0,0,0,0,0,0,0,0,0,- 193,0,16128,4095,252,16128,

- 1,240,- 256,- 769,0
2720 DATA 0,0,0,0,- 193,240,768,- 1 ,255,768,- 1,1023,- 1,- 1,

240,0,0,0,- 193,192
2730 DATA - 256,4095,252,- 253,- 1,255,- 256,- 1,240,- 253,- 1,

- 1,768,- 1,255,16128,- 1,- 3841,768,- 1
2740 DATA 1023,- 1,- 1,240,0,0,0,- 193,192,- 256,4095,252,

- 193,- 1,- 3841,- 256,- 1,252,- 1009,0
2750 DATA - 256,4032,- 1,- 16129,- 253,- 1,- 1,768,- 1,1023,- 1,

- 1,240,0,0,0,- 193,240,- 253,4095
2760 DATA 252,- 3841,0,- 961,- 256,- 1,255,0,0,0,3840,- 1,

- 16129,- 241,0,- 253,960,- 1,1023,- 1
2770 DATA - 1 ,240,0,0,0,- 193,240,- 253,4095,1020,255,0,

- 253,- 256,4032,- 16129,- 1,- 1,- 1,4092
2780 DATA 4095,- 16129,- 4033,0,16128,1008, - 1,1023,- 1,- 1,

240,0,0,0,- 193,252,- 241,4095,1020,252
2790 DATA 0,- 256,- 256,960, - 15361 ,252,0,0,4095,1023,- 16129,

- 16321,0,3840,1008,255,0,3840,252,0
2800 DATA 0,0,0,- 193,252,- 241 ,4095,4092,240,0,16128,- 64,

192,- 16129,0,0,0,3840,255,0
2810 DATA 255,0,768,1020,255,0,3840,252,0,0,0,0,- 193,255,

- 193,4095,4092,240,0,16128
2820 DATA - 64,192,- 12289,- 1,192,- 241, - 12289,- 3841,0,255,0,

768,1020,255,0,3840,252,0,0,0
2830 DATA 0,- 193,255,- 193,4095,16380,192,0,3840,- 16,960,

- 12289,240,0,0,- 15553,- 1,768,252,0
2840 DATA 0,1023,255,0,3840,252,0,0,0,0,- 193,- 16129,- 1,

4095,16380,192,0,0,- 256,4032
2850 DATA - 16129,0,0,0,768,-1,1008,252,0,0,1023,- 1,255,

3840,252,0,0,0,0, - 3265
2860 DATA - 16129,- 3073,4095,16380,192,0,0,- 256,- 1,4095,

- 1,0,- 253,- 16129,- 1,1020,252,0,0,1023
2870 DATA - 1,255,3840,252,0,0,0,0,- 3265,- 3073,- 3073,4095,

16380,192,0,0,- 256,- 1,4095,240
2880 DATA 0,0,- 16321 ,- 241,1023,252,0,0,1023,- 1,255,3840,

252,0,0,0,0,- 4033,- 3073,- 15361
2890 DATA 4095,16380,192,0,0, - 256,- 1,252,0,0,0,0,16128,

- 15361,252,0,0,1023,- 1,255
2900 DATA 3840,252,0,0,0,0, - 4033,- 1,- 15361,4095,16380,192,

0,0,- 256,- 1,4092,240,0,0

88

Piano Program Listing

2910 DATA - 16321,768,- 3073,252,0,0,1023,255,0,3840,252,0,
0,0,0, - 4033,- 193,1023,4095,4092

2920 DATA 240,0,0,- 256, - 64,4092, - 1,192,- 241, - 16129,0,
- 3841,255,0,768,1020,255,0,3840,252

2930 DATA 0,0,0,0,-4033,- 193,1023,4095,4092,240,0,16128,
-64,4032,255,0,0,0,16128,252

2940 DATA - 3841,255,0,768,1020,255,0,3840,252,0,0,0,0,
- 4033,- 241,1020,4095,1020,252,0

2950 DATA - 256,-256,960,1023,252,0,0,16383,1023,- 3841,
- 16321,0,3840,1008,255,0,3840,252,0,0

2960 DATA 0,0, - 4033, - 241,1020,4095,1020,255,0, - 253,- 256,
960, - 16129,- 1,- 1,- 1,16380,- 1,-3841,- 4033

2970 DATA 0,16128,1008,255,0,3840,252,0,0,0,0, - 4033, - 253,
1008,4095,252,- 3841,0,- 961, - 256

2980 DATA 192,- 16129,0,0,0,3840,- 1,- 16129,- 241,0,- 253,960,
255,0,3840,252,0,0,0,0

2990 DATA - 4033, - 253,1008,4095,252, - 193, 768, - 3841 , - 256,192,
- 16129,- 1009,0,- 256,4032, - 1,255,- 253,240, - 193

3000 DATA 768,255,0,3840,252,0,0,0,0, - 4033, - 256,960,4095,
252,- 253,- 1,255,- 256,192, - 16129

3010 DATA - 253,- 1,- 1,768,- 1,252,16128,- 1,- 3841,768,255,0,
3840,252,0,0,0,0, - 4033,- 256

3020 DATA 960,4095,252,16128, - 1,240,- 256,192, - 16129,0,0,
0,0, - 193,192,768,- 1,255,768,255

3030 DATA 0,3840,252,0,0,0,0,0,0,0,0,0,768,- 1 ,0,0,0,0,
3840,- 1

3040 DATA - 16129,0,0,0,0, - 193,240,0,0,0,0,0,0,0,0,0,0,0,0,0
3050 DATA 0,0,0,0,0,0,0,0, - 193,240,0,0,0,0,0,0,0,0,0,0

89

Appendix C

Sample Cursors

Standard Cursor Shape 94

Up Arrow 96

Left Arrow 98

Check Mark 100

Pointing Hand 102

Diagonal Cross 104

Rectangular Cross 106

Hourglass 108

91

Sample Cursors

This appendix describes eight sample graphics cursors. These
sample cursors illustrate the wide variety of cursor shapes that
can be defined for use in BASIC application programs.

The sample cursors are designed for high-resolution graphics
mode. Each cursor is a white shape with a black outline on a
transparent field. The shape suggests the type of action you may
take with the mouse. For example, an arrow usually means
"make a selection by pointing at an item."

To use a sample cursor in your own BASIC program, copy the
BASIC statements presented for the cursor directly to your
program. Type the statements exactly as shown, using line
numbers that are consistent with your program's numbering
scheme.

To use a sample cursor in an assembly or high-level language
program, define an array in your program and assign the values
given for each cursor to the array elements. Assign the values so
that their storage order is identical to their storage order in a
BASIC program.

The statements in this appendix only define the cursor's shape.
I t is up to you to define the action associated with a cursor by
including the necessary statements in your program.

93

Microsoft Mouse

Standard Cursor Shape

The standard cursor shape is a solid arrow which points up and
to the left. The hot spot is just beyond the arrow's tip, so you can
point to an item without covering it. The standard cursor is the
most convenient shape when using the mouse to choose or select
items from the screen.

100 '
200 : Define the screen mask
300 '
400 CURSOR(0,0)=&H3FFF
500 CURSOR(1 ,0)=&H1 FFF
600 CURSOR(2,0)=&HOFFF
700 CURSOR(3,0)=&H07FF
800 CURSOR(4,0)=&H03FF
900 CURSOR(5,0)=&H01 FF

1000 CURSOR(6,0)=&HOOFF
1100 CURSOR(7,0)=&H007F
1200 CURSOR(8,0)=&H003F
1300 CURSOR(9,0)=&H001 F
1400 CURSOR(10,0)=&H01 FF
1500 CURSOR(11 ,0)=&H10FF
1600 CURSOR(12,0)=&H30FF
1700 CURSOR(13,0)=&HF87F
1800 CURSOR(14,0)=&HF87F
1900 CURSOR(15,0)=&HFC3F

'Binary 0011111111111111
'Binary 0001111111111111
'Binary 0000111111111111
'B i nary 0000011111111111
'Binary 0000001111111111
'Binary 0000000111111111
'Binary 0000000011111111
'Binary 0000000001111111
'Binary 0000000000111111
'Binary 0000000000011111
'Binary 0000000111111111
'Binary 0001000011111111
'Binary 0011000011111111
'Binary 1111100001111111
'Binary 1111100001111111
'Binary 1111110000111111

94

2000 '
2100 ' Define cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H4000
2500 CURSOR(2,1)=&H6000
2600 CURSOR(3,1)=&H7000
2700 CURSOR(4,1)=&H7800
2800 CURSOR(5,1)=&H7COO
2900 CURSOR(6,1)=&H7EOO
3000 CURSOR(7,1)=&H7FOO
3100 CURSOR(8,1)=&H7F80
3200 CURSOR(9,1)=&H78CO
3300 CURSOR(10, 1)=&H7COO
3400 CURSOR(11 ,1)=&H4600
3500 CURSOR(12,1)=&H0600
3600 CURSOR(13,1)=&H0300
3700 CURSOR(14,1)=&H0300
3800 CURSOR(15,1)=&H0180
3900 '

Sample Cursors

'B i nary 0000000000000000
'Binary 0100000000000000
'Binary 0110000000000000
'B i nary 0111 000000000000
'Binary 0111100000000000
'Binary 0111110000000000
'Binary 0111111000000000
'Binary 0111111100000000
'Binary 0111111110000000
'Binary 0111111111000000
'Binary 0111110000000000
'Binary 0100011000000000
'B i nary 0000011 000000000
'Binary 0000001100000000
'Binary 0000001100000000
'Binary 0000000110000000

4000 ' Define cursor shape, color, and hot spot
4100 '
4200 M1% = 9
4300 M2% = - 1 ' Horizontal hot spot
4400 M3% = - 1 'Vertical hot spot
4500 CALL MOUSE(M1% , M2%, M3%, CURSOR(O,O))

95

Microsoft Mouse

UpArrow

The up arrow is a solid, up-directed arrow with the hot spot at
the tip. This shape is useful when directing a motion on the
screen with the mouse.

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&HF9FF
500 CURSOR(1,0)=&HFOFF
600 CURSOR(2,0)=&HE07F
700 CURSOR(3,0)=&HE07F
800 CURSOR(4,0)=&HC03F
900 CURSOR(5,0)=&HC03F

1000 CURSOR(6,0)=&H801 F
1100 CURSOR(7,0)=&H801 F
1200 CURSOR(8,0)=&HOOOF
1300 CURSOR(9,0)=&HOOOF
1400 CURSOR(10,0)=&HFOFF
1500 CURSOR(11 ,O)=&HFOFF
1600 CURSOR(12,0)=&HFOFF
1700 CURSOR(13,0)=&HFOFF
1800 CURSOR(14,0)=&HFOFF
1900 CURSOR(15,0)=&HFOFF

, Binary 11111 00111111111
, B i nary 1111 000011111111
, Binary 1110000001111111
, Binary 1110000001111111
, Binary 1100000000111111
, Binary 1100000000111111
, Binary 1000000000011111
, Binary 1000000000011111
, Binary 0000000000001111
, Binary 0000000000001111
, Binary 1111000011111111
, Binary 1111000011111111
, Binary 1111000011111111
, Binary 1111000011111111
, Binary 1111000011111111
, Binary 1111 000011111111

96

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H0600
2500 CURSOR(2,1)=&HOFOO
2600 CURSOR(3,1)=&HOFOO
2700 CURSOR(4,1)=&H1 F80
2800 CURSOR(5,1)=&H1 F80
2900 CURSOR(6,1)=&H3FCO
3000 CURSOR(7,1)=&H3FCO
3100 CURSOR(8,1)=&H7FEO
3200 CURSOR(9,1)=&H0600
3300 CURSOR(10,1)=&H0600
3400 CURSOR(11,1)=&H0600
3500 CURSOR(12,1)=&H0600
3600 CU RSOR(13,1)=&H0600
3700 CURSOR(14,1)=&H0600
3800 CURSOR(15,1)=&HOOOO
3900 '

Sample Cursors

, Binary 0000000000000000
, Binary 0000011000000000
, Binary 0000111100000000
, Binary 0000111100000000
, Binary 0001111110000000
, Binary 0001111110000000
, Binary 0011111111000000
, Binary 0011111111000000
, Binary 0111111111100000
, Binary 0000011000000000
, Binary 0000011000000000
, Binary 0000011000000000
, Binary 0000011000000000
, Binary 0000011000000000
, Binary 0000011000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 5 ' horizontal hot spot
4400 M3 = 0 ' vertical hot spot
4500 CALL MOUSE(M1,M2,M3,CURSOR(O,O))

97

Microsoft Mouse

Left Arrow

The left arrow is a solid, left-directed arrow with the hot spot at
the tip. This shape is useful when directing a motion on the
screen with the mouse. To generate a right arrow, just reverse the
binary bit pattern for each array element and move the hot spot
to the new tip. For example, the first element, Binary 1111111­
000011111 (&HFE1F), becomes Binary 1111100001111111
(&HF87F).

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&HFE1 F , Binary 1111111000011111
500 CURSOR(1 ,0)=&HF01 F , Binary 1111000000011111
600 CURSOR(2,0)=&HOOOO , Binary 0000000000000000
700 CURSOR(3,0)=&HOOOO , Binary 0000000000000000
800 CURSOR(4,0)=&HOOOO , Binary 0000000000000000
900 CURSOR(5,0)=&HF01 F , Binary 1111000000011111

1000 CURSOR(6,0)=&HFE1 F , Binary 1111111 000011111
1100 CURSOR(7,0)=&HFFFF , Binary 1111111111111111
1200 CURSOR(8,0)= &HFFFF , Binary 1111111111111111
1300 CURSOR(9,0)=&HFFFF , Binary 1111111111111111
1400 CURSOR(10,0)=&HFFFF , Binary 1111111111111111
1500 CURSOR(11 ,O)=&HFFFF , Binary 1111111111111111
1600 CURSOR(12,0)=&HFFFF , Binary 1111111111111111
1700 CURSOR(13,0)=&HFFFF , Binary 1111111111111111
1800 CURSOR(14,0)=&HFFFF , Binary 1111111111111111
1900 CURSOR(15,0)=&HFFFF , Binary 1111111111111111

98

Sample Cursors

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&HOOCO
2500 CURSOR(2,1)=&H07CO
2600 CURSOR(3,1)=&H7FFE
2700 CU RSOR(4,1)=&H07CO
2800 CURSOR(5,1)=&H07CO
2900 CURSOR(6,1)=&HOOOO
3000 CURSOR(7,1)=&HOOOO
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,1)=&HOOOO
3400 CURSOR(11, 1)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR(14, 1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

, Binary 0000000000000000
, Binary 0000000011000000
, Binary 0000011111000000
, Binary 0111111111111110
, Binary 0000011111 000000
, Binary 0000000011000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 0 ' horizontal hot spot
4400 M3 = 3 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

99

Microsoft Mouse

Check Mark

The check mark is a solid figure with the hot spot in the center of
the "V" formed by the check. The shape can be used when checking
off items from a list with the mouse or while a program is
checking some aspect of its operation.

100 '
200 ' Define the screen mask
300 '
400 CURSOR(O,O)=&HFFFO
500 CURSOR(1,0)=&HFFEO
600 CURSOR(2,0)=&HFFCO
700 CURSOR(3,0)=&HFF81
800 CURSOR(4,0)=&HFF03
900 CURSOR(5,0)=&H0607

1000 CURSOR(6,0)=&HOOOF
1100 CURSOR(7,0)=&H001 F
1200 CURSOR(8,0)=&HC03F
1300 CURSOR(9,0)=&HF07F
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(11 ,O)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF

, B i nary 111111111111 0000
, B i nary 11111111111 00000
, Binary 1111111111000000
, Binary 1111111110000001
, Binary 1111111100000011
, Binary 0000011000000111
, Binary 0000000000001111
, Binary 0000000000011111
, Binary 1100000000111111
, Binary 1111 000001111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111

100

Sample Cursors

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H0006
2500 CURSOR(2,1)=&HOOOC
2600 CURSOR(3,1)=&H0018
2700 CURSOR(4,1)=&H0030
2800 CURSOR(5,1)=&H0060
2900 CURSOR(6,1)=&H70CO
3000 CURSOR(7,1)=&H1 080
3100 CURSOR(8,1)=&H0700
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,1)=&HOOOO
3400 CURSOR(11, 1)=&HOOOO
3500 CURSOR(12, 1)=&HOOOO
3600 CURSOR(13, 1)=&HOOOO
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

, Binary 0000000000000000
, Binary 0000000000000110
, Binary 0000000000001100
, Binary 0000000000011000
, Binary 000000000011 0000
, Binary 0000000001100000
, Binary 0111000011000000
, Binary 0001110110000000
, Binary 00000111 00000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 6 ' horizontal hot spot
4400 M3 = 7 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

101

Microsoft Mouse

Pointing Hand

The pointing hand is a solid figure with the hot spot at the tip of
the extended finger. The pointing hand is another convenient
shape to use when choosing or selecting items from the screen,
especially if the items are represented by icons or symbols such
as the keys of a piano keyboard or a calculator.

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&HE1 FF
500 CURSOR(1 ,0)=&HE1 FF
600 CURSOR(2,0)=&HE1 FF
700 CURSOR(3,0)=&HE1 FF
800 CURSOR(4,0)=&HE1 FF
900 CURSOR(5,0)=&HEOOO

1000 CURSOR(6,0)=&HEOOO
1100 CURSOR(7,0)=&HEOOO
1200 CURSOR(8,0)=&HOOOO
1300 CURSOR(9,0)=&HOOOO
1400 CURSOR(10,0)=&HOOOO
1500 CURSOR(11 ,O)=&HOOOO
1600 CURSOR(12,0)=&HOOOO
1700 CURSOR(13,0)=&HOOOO
1800 CURSOR(14,0)=&HOOOO
1900 CURSOR(15,0)=&HOOOO

, Binary 111 0000111111111
, Binary 111 0000111111111
, Binary 111 0000111111111
, Binary 111 0000111111111
, Binary 111 0000111111111
, Binary 1110000000000000
, Binary 1110000000000000
, Binary 111 0000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

102

2000'
2100' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&H1 EOO
2400CURSOR(1,1)=&H1200
2500 CURSOR(2,1)=&H1200
2600 CURSOR(3,1)=&H1200
2700 CURSOR(4,1)=&H1200
2800 CURSOR(5,1)=&H13FF
2900 CURSOR(6,1)=&H1249
3000 CURSOR(7,1)=&H1249
3100 CURSOR(8,1)=&HF249
3200 CURSOR(9,1)=&H9001
3300 CURSOR(10,1)=&H9001
3400 CURSOR(11,1)=&H9001
3500 CU RSOR(12,1)=&H8001
3600 CU RSOR(13, 1)=&H8001
3700 CURSOR(14, 1)=&H8001
3800 CU RSOR(15, 1)=&H FFFF
3900 '

Sample Cursors

, Binary 0001111000000000
, Binary 0001 001 000000000
, Binary 0001001000000000
, Binary 0001 001 000000000
, Binary 0001001000000000
, Binary 0001001111111111
, Binary 0001001001001001
, Binary 0001001001001001
, Binary 1111001001001001
, Binary 1001000000000001
, Binary 1001000000000001
, Binary 1001000000000001
, Binary 1000000000000001
, Binary 1000000000000001
, Binary 1000000000000001
, Binary 1111111111111111

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 5 ' horizontal hot spot
4400 M3 = 0 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(O,O))

103

Microsoft Mouse

Diagonal Cross

The diagonal cross is a solid figure with the hot spot at the center
of the cross. The shape is useful as a pointer in a game, or when
canceling an operation or deleting an item from a list.

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&H07EO
500 CURSOR(1,0)=&H0180
600 CURSOR(2,0)=&HOOOO
700 CURSOR(3,0)=&HC003
800 CURSOR(4,0)=&HFOOF
900 CURSOR(5,0)=&HC003

1000 CURSOR(6,0)=&HOOOO
1100 CURSOR(7,0)=&H0180
1200 CURSOR(8,0)=&H07EO
1300 CURSOR(9,0)=&HFFFF
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(11 ,O)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF

, Binary 0000011111100000
, Binary 000000011 0000000
, Binary 0000000000000000
, Binary 11 00000000000011
, Binary 1111000000001111
, Binary 11 00000000000011
, Binary 0000000000000000
, Binary 000000011 0000000
, Binary 0000011111100000
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111

104

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H700E
2500 CURSOR(2,1)=&H1C38
2600 CURSOR(3,1)=&H0660
2700 CURSOR(4,1)=&H03CO
2800 CURSOR(5,1)=&H0660
2900 CURSOR(6,1)=&H 1 C38
3000 CURSOR(7,1)=&H700E
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(1 0,1)=&HOOOO
3400 CURSOR(11,1)=&HOOOO
3500 CURSOR(12, 1)=&HOOOO
3600 CURSOR(13, 1)=&HOOOO
3700 CURSOR(14, 1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

Sample Cursors

, Binary 0000000000000000
, Binary 0111000000001110
, Binary 0001110000111000
, Binary 0000011001100000
, Binary 0000001111000000
, Binary 0000011001100000
, Binary 0001110000111000
, Binary 0111000000001110
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 7 ' horizontal hot spot
4400 M3 = 4 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

105

Microsoft Mouse

Rectangular Cross

The rectangular cross is a solid figure with the hot spot at the
center of the cross. The shape is useful as a pointer in a game, or
when inserting items into a list.

100 '
200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&HFC3F
500 CURSOR(1,0)=&HFC3F
600 CURSOR(2,0)=&HFC3F
700 CURSOR(3,0)=&HOOOO
800 CURSOR(4,0)=&HOOOO
900 CURSOR(5,0)=&HOOOO

1000 CURSOR(6,0)=&HFC3F
1100 CURSOR(7,0)=&HFC3F
1200 CURSOR(8,0)=&HFC3F
1300 CURSOR(9,0)=&HFFFF
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(11 ,O)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF

, Binary 111111 0000111111
, Binary 1111110000111111
, Binary 1111110000111111
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, B i nary 111111 0000111111
, Binary 111111 0000111111
, Binary 1111110000111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111
, Binary 1111111111111111

106

Sample Cursors

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H0180
2500 CURSOR(2,1)=&H0180
2600 CURSOR(3,1)=&H0180
2700 CURSOR(4,1)=&H7FFE
2800 CURSOR(5,1)=&H0180
2900 CURSOR(6,1)=&H0180
3000 CURSOR(7,1)=&H0180
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10, 1)=&HOOOO
3400 CURSOR(11, 1)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

, Binary 0000000000000000
, Binary 0000000110000000
, Binary 0000000110000000
, Binary 0000000110000000
, Binary 0111111111111110
, Binary 0000000110000000
, Binary 0000000110000000
, Binary 0000000110000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 7 ' horizontal hot spot
4400 M3 = 4 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

107

Microsoft Mouse

Hourglass

The hourglass is a solid figure with the hot spot at the center of
the glass. This shape can be used to show that the operation in
progress will take some time to complete.

100 '
200 ' Define the screen mask
300 '
400 '
500 CURSOR(1,0)=&HOOOO
600 CURSOR(2,0)= &HOOOO
700 CURSOR(3,0)=&HOOOO
800 CURSOR(4,0)=&H8001
900 CURSOR(5,0)=&HC003

1000 CURSOR(6,0)=&HE007
1100 CURSOR(7,0)=&HFOOF
1200 CURSOR(8,0)=&HE007
1300 CURSOR(9,0)=&HC003
1400 CURSOR(10,0)=&H8001
1500 CURSOR(11 ,O) = &HOOOO
1600 CURSOR(12,0)=&HOOOO
1700 CURSOR(13,0)=&HOOOO
1800 CURSOR(14,0)=&HOOOO
1900 CURSOR(15,0)=&HFFFF

, Binary 0000000000000000
' Binary 0000000000000000
, Binary 0000000000000000
, Binary 1000000000000001
, Binary 1100000000000011
, Binary 1110000000000111
, Binary 1111000000001111
, Binary 1110000000000111
, Binary 1100000000000011
, Binary 1000000000000001
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 0000000000000000
, Binary 1111111111111111

108

2000 '
2100 ' Define the cursor mask
2200 '
2300 CURSOR(0,1)=&HOOOO
2400 CURSOR(1,1)=&H7FFE
2500 CURSOR(2,1)=&H6006
2600 CURSOR(3,1)=&H300C
2700 CURSOR(4,1)=&H1818
2800 CURSOR(5,1)=&HOC30
2900 CURSOR(6,1)=&H0660
3000 CURSOR(7,1)=&H03CO
3100 CURSOR(8,1)=&H0660
3200 CURSOR(9,1)=&HOC30
3300 CURSOR(10,1)=&H1998
3400 CURSOR(11 ,1)=&H33CC
3500 CURSOR(12, 1)=&H67E6
3600 CURSOR(13,1)=&H7FFE
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

Sample Cursors

, Binary 0000000000000000
, Binary 0111111111111110
, Binary 0110000000000110
, Binary 0011000000001100
, Binary 0001100000011000
, Binary 000011 000011 0000
, Binary 0000011001100000
, Binary 0000001111 000000
, Binary 0000011001100000
, Binary 0000110000110000
, Binary 0001100110011000
, Binary 0011001111001100
, Binary 0110011111100110
, Binary 0111111111111110
, Binary 0000000000000000
, Binary 0000000000000000

4000 ' Set the mouse cursor shape, color, and hot spot
4100 '
4200 M1 = 9
4300 M2 = 7 ' horizontal hot spot
4400 M3 = 7 ' vertical hot spot
4500 CALL MOUSE(M1 ,M2,M3,CURSOR(0,0))

109

Index

123.DEF file, 10

123.MNU file, 10

Adapter, 9, 41, 47

Anatomy of the mouse, 21

Application programs, 4, 39

AUTOEXEC.BAT file, 10

Backup copies, 18

Ball cleaning, 22, 77- 79

Basic techniques, 21- 24

Bootable disk, creating, 15

Buttons

described, 21, 47

pressing information,

61- 62

status, 59

Call mask, setting, 69- 70

Calls from

assembly language programs, 51

BASIC interpreter, 49- 50

high-level language programs,

52- 53

Cleaning the mouse, 77- 79

Color/graphics monitor
adapter, 9, 41, 47

CONFIG.SYS file, 18

Coordinates, screen, 41- 42

Cursor

defining, high-resolution
graphics mode, 43- 44, 65- 66

flag, internal, 48, 57- 58

hiding, 58

position, setting, 60

sample, 93- 109

Cursor mask

graphics, 43, 69- 70

text, 45- 47

Default values, 56

Defining integer variables, 50

Demonstration programs, 25- 36

Disk

backup, 18

bootable, creating, 15

storage, 18

DISKCOPY program, 18

DOODLE.EXE file, 10

Error messages, 14

111

Index

Foam ring, removing, 11

FORMAT program, 18

Four-color graphics mode, 43, 44

Functions

0, mouse installed flag and
reset, 56

1, show cursor, 57

2, hide cursor, 58

3, get mouse position and

button status, 59

4, set mouse cursor position, 60

5, get button press information,

61

6, get button release informa­

tion, 62

7, set horizontal position, 63

8, set vertical position, 64

9, set graphics cursor block,

65- 66

10, set text cursor, 67

11, read mouse motion counters,

68

12, set user-defined subroutine

input mask, 69- 70

13, light pen emulation mode

on,71

14, light pen emulation mode

off,72

15, set mickey/pixel ratio, 73

16, conditional off, 74

19, set double speed threshold, 75

descriptions, 54

parameters, 56

Game of Life

commands, 31- 33

interesting patterns, 34- 36

placing, removing cells, 30-31

rules, 30

strategies, 34

Graphics cursor

hot spot, 44

mask, 43, 69- 70

Graphics mode, 43- 44

Hardware

cursor, 46

features, 3

installation procedure, 11

High-resolution graphics mode,
43-44

HOKUSAI file, 10

Holding the mouse, 23

Inspecting the mouse,

21- 22

Installation, 11- 18

automatic, 15

backup copies, 18

DOS versions 1.x, 16

DOS versions 2.x, 17- 18

manual,13

unsuccessful, 14

Integer variables, defining, 50

Internal cursor flag, 48,

57- 58

LIFE.EXE program, 10

Light pen emulation mode

off,72

on, 71

Loading procedure, 12- 18

MAKEMENU.EXE file, 10

MENU.COM file, 10

Mickey, 47

Mickey/pixel ratio setting, 73

Monochrome display and printer

adapter, 41, 47

Motion counter, reading, 68

Mouse package, described, 3, 10

Mouse software, interface,

described, 39- 48

112

http:MENU.COM

MOUSE.COM program,
10, 1~

MOUSE.LIB file, 10

MOUSE.SYS file, 10

Moving the mouse, 23- 24

MPIBM.DEF file, 10

MPIBM.MNU file, 10

MPMS.DEF file, 10

MPMS.MNU file, 10

Offset, entry, 49

Package contents, 10

Piano

playing, 27- 28

program listing, 81- 89

PIANO.BAS file, 10

PIANO.EXE file, 10

Preliminary procedures, 9- 11

README.DOC file, 10

Required tools, 77

Reshipment procedure, 10

Sample cursors, 93- 109

Scan lines, 46

Screen coordinates, 41- 42

Index

Screen mask

graphics, 43- 44

text, 45- 47

Screen modes, 40- 41

Segment address, 49

Shipping damage, 10

Software

features, 3- 4

installation procedure, 12- 18

values, default, 56

Surface requirements, 22

System

calls, 39

requirements, 9

Text cursor

described, 42

mask,45- 47

setting, 67

Tools, 77

VC.DEF file, 10

VC.MNU file, 10

Vertical position, setting, 64

Virtual screen, 41- 42

WS.DEF file, 10

WS.MNU file, 10

113

http:MOUSE.COM

